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Integral Equations and Discretizations 
for Waveguide Apertures 

John J. Ottusch. George C. Valley, and Stephen Wandzura 

Abstract— We present integral equations and their discretiza- 
tions for calculating the fields radiated from arbitrarily shaped 
antennas fed by cylindrical waveguides of arbitrary cross sec- 
tions. We give results for scalar fields in two dimensions with 
Dirichlet and Neumann boundary conditions and for (vector) 
electric and magnetic fields in three dimensions. The discretized 
forms of the equations are cast in identical format for all four 
cases. Feed modes can be TM. TE. or transverse electromagnetic 
(TEM). A method for numerically computing the modes of an 
arbitrarily shaped, cylindrical waveguide aperture is also given. 

Index Terms—Aperture antennas, integral equations. 

N 
I. INTRODUCTION 

UMERICAL simulation of the electromagnetic perfor- 
mance of antennas using integral equations requires a 

mathematical model of the driving sources. In contrast to 
scattering cross-section computations where a distant source 
creates a plane wave in the vicinity of the scatterer. construc- 
tion of an accurate source model for an antenna is nontrivial. 
If a simple approach, such as a '-delta-gap'" excitation [1] 
is used, the accuracy of some important antenna parameters, 
such as input impedance, gain, and reflection can be seriously 
compromised, even for cases in which the far-field pattern is 
obtained accurately. 

The purpose of this paper is twofold. First, we develop 
integral equations representing exact specification of the field 
emanating from an aperture of arbitrary shape with the field 
entering the aperture left unconstrained and to be determined. 
The exact definition of the "emanating" field is accomplished 
by analysis of a translationally invariant waveguide that has 
the cross section of the given aperture. In the context of 
a generalized scattering problem such as a waveguide-fed 
antenna, such an integral equation may serve as a boundary 
condition that must be obeyed inside the waveguide on any- 
plane normal to its axis. Second, we derive discretized form's 
of the integral equations1 (using the method of moments) 
that are suitable for numerical computation. As part of this 
development, we give a useful interpretation of the kernel that 
appears in the "waveguide integral equation." 
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has been used previously by McGrath and Pyati [2] We. however, try to 
clarify the intent, development, and use of this formulation in the context of 
a generalized method of moments discretization. 

Our development  is  based on  the  assumption  that  the 
waveguide is: 

• translationally invariant in the half-space behind the aper- 
ture along the axis normal to the aperture: 

• terminated by a perfect absorber or is so long as to be 
practically nonreflecting: 

• filled with a linear, isotropic. homogeneous medium: 
'• • enclosed by walls that are infinitely hard or infinitelv soft 

in the scalar scattering case or perfectly conducting in the 
electromagnetic scattering case. 

The first section is devoted to finding continuous and 
discretized forms of the waveguide integral equations for 
scalar waves and then applying them to more general scattering 
problems. These equations apply to acoustic scattering in two 
or three dimensions as well as the two-dimensional (2-D) 
analogues of three-dimensional (3-D) electromagnetic scat- 
tering (which apply to scatterers with translational symmetry 
in a direction orthogonal to the axis of the wavesuide). In 
the second section, we do the same for 3-D electromagnetic 
scattering. The two treatments are entirely analogous. Formu- 
las for the power flow out of (due to the given excitation) 
and into (due to back scattering) the waveguide are also 
given in each section. In the third section, we show how the 
waveguide integral equations can be extended to more general 
circumstances. Prescriptions for numerically computing the 
modes of cylindrical waveguides with arbitrary cross sections 
may be found in the Appendix. 

II. SCALAR WAVEGUIDE EQUATIONS 

A. Modes 

An arbitrary field w(x) that satisfies the scalar Helmholtz 
equation 

(V2 + k2)v(x) = 0 (1) 

inside a waveguide aligned with the z axis, can be written 
as a sum of modal components2 traveling in the +z and -z 
directions [3] 

i!>(x±.z) = £(aneifl» = + bne-ia'*)u„(x±).        (2) 

-For simplicity, we will assume that no cutoff modes (i.e.. those with 
J = 0) are present. It is straightforward to amend the development to handle 
such modes. 
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Likewise, the  longitudinal derivative of the  field raav be 
written as 

dv'x_.:<      v- ,       ,7; 
(3) 

where riixi is the outward unit normal to 5 at x. In the case 
of a waveguide aperture, a simplifies to 

dviX . r'| 
C7(X_.0) =   -■ 

d:- x    on II". (Hi 

where 

Zn = U) 

is the modal impedance. In these equations, an implicit <T! 

Inserting this into (8) and dropping the spatial coordinate r. 
we obtain the following integral equation on the waveguide 
aperture that relates the field, its longitudinal derivative" and 
the specified waveguide excitation on II": 

time dependence  is assumed for the fields,  k   =   + /c is 2v™ix_) = v(x.) -  f dx' H{x    x   mx   ■.      (P) 
the free-space propagation constant and 3r. and un:x   i are. Jw     ~       ~    ~        ~" the free-space propagation constant and 3n and un:x_) are. 
respectively, the propagation constant and transverse field 
distribution of the nth mode inside the guide. The modes are 
eigensolutions to the scalar wave equation 

(Yi^k2-3l)unix_) = 0 (5) 

for x_ inside the waveguide aperture IT" and the un(x_) 
are constrained to satisfy the boundary conditions of the 
waveguide walls when x_ is on the boundary of the aperture 
dir. With proper normalization, the modes form a complete 
and orthonormal set of functions over H". i.e.. 

J^u„(x±)un(x'J = 6{x_ - x'_)   Completeness     (6) 

and 

H(x_.x'_) is the kernel of the "'square root"' of the trans- 
verse wave operator in the sense that 

/   dx'_H(x_.x'_)Hix  .x" i = G. ix  .x" !        m) 

where G_ obeys 

(V^+/,-2)G_|X_.X^'l=:-f"!X_-X^) (14) 

inside the waveguide and satisfies the boundarv conditions on 
the waveguide walls. 

A different relation between v. a. and the outsoins 
wave is obtained if we specify dvom(x_.z)/dz instead of 
rout(x_.c) to write 

dx_ um (x_ )un (x_) = 6mn    Orthonormality.    (7) 
dv°mix_.Q) 

dz 
k Elk 

an—un(x_ 

B. Waveguide Integral Equation 

Let v°mtx_.z) denote a specified outgoing wave, z = 0 
correspond to the plane of the waveguide aperture, and the 
rest of the waveguide be located in the half-space with z < 0. 
Using the modal expansions and the completeness relation 
for the modes, we can write the following expression for 

Ir. ,  , ik 
- ;2.(°" ■Jrbn) — un(x±) 

-        71 Z" 

1 V- ik , 

-   n   z.n 

1 di-ix',.:') 

on II 
x_. 0) in terms of the field and its longitudinal derivative 

v°m(x_.0) = ^anun(x±) 
n 

i v- 
= öL- " +bn)un(x_) 

71 

~ ö 2^ TIP0" _ 6T>)-5^«T1(X_) 

= 2e'(x--°) + 5 /  dx'_H(x_.x'_) 

d-iix'. .z')\ 

2       dz' 
x v{x±.Q) 

l\Y 
dx'±H(x±.x'±] 

where3 

ik 
H(x_.x'_) = J2^un(x_)un(x'_). 

(15) 

(16) 

Dropping the spatial coordinate z and defining a as before, we 
get an alternative form for the waveguide integral equation 

r' = 0 

where 

H(x^.x'J = Y,^un(x_)un(x'±). 

(8) 

(9) 

^ ^lvdx'±H(x±.x'±)iP(x'±) (17) 

= a(x±)- [dx'_H{x±.x'x)xb{x'±). (18) 

H(xx.x'±) and H(x±.x'_L) are "inverse operators" in the 
sense that 

,<9routfx_) 
dz 

For any point x on a general surface 5, we may define an 
independent surface field quantity 

JKdx'±H(xx.x'_)H(x'x.x'[) = 6(x±-xl). (19) 

<r(x) = - lim n(x) • V't'(x'):    x on S (10) 

Note that /f(x_.x^) is not a function since the sum over all n does 
not converge. Rather. like the Dirac delta "function" «ix x', ) it is a 
d.smbunon. which, when convolved with a suitablv smooth function, produces 
a well-defined value. ' 
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w»v»gwoe    < W 

eliminate v. putting the known field rou!:x- on ihe left and 
the unknown quantity aix] on the nsht 

-2 i   ds'in ■T'G(x.x'))v°'':,'x' 

Fig. 1.    Antenna system composed of waveguide aperture II' and antenna =  is ds'G'X x'lfiix'   - i  d<'Glx xW 
surface 5. /5 J' 

ds'in ■ V'Gix.x'ii /   d,"H x'.x":r x" 
Using (12.) and (18) on the waveguide aperture W. we 

can derive boundary integral equations that apply to more '-4) 

general scattering cases. For example, we can write coupled    for x on c aj]d 

boundary integral equations for the case of a waveguide 
aperture connected to a general scatterer. This is demonstrated        ,'.<>•", x-; _ o I  ^c',v.'   V'r, v Y"i ■„ ™-,   ' ., , ,      , <-      yx; — J. x   as (n • \   Lr\ x. x i u      ; x i 
in the next subsection for the special cases in which the J\v 
scattering surface obeys either Dirichlet or Neumann boundary' _  /  , ,r."    ,.   .  ,. 
conditions. In both cases, it is assumed that the union of the ~ %   $     '"X      * 
scatterer 5 and waveguide aperture W forms a closed surface. f      , ,       ,       1 
as indicated in Fig. 1. ~ f   ds [G(x.xV(x"! - -Hix.x'icrix')} 

C. Coupled Integral Equations ~f   ds'in'■Y'Gix.x'))       ds"Hix'.x" ia(x": 

In this section, we derive integral equations relating the (25) 
known field emanating from the waveguide aperture to an 
unknown surface field (either w or a) for the generic closed for x on W ' 
antenna system shown in Fig. 1. For Dirichlet (Neumann) 2> Neumann Boundary  Conditions on S:  The  integral 
boundary conditions on 5, the unknown surface field on both e1uation for u ('-e- the normal derivative of the field) may 
S and W is chosen to be a{ii<). be wnnen as [4] 

1) Dirichlet Boundary Conditions on S: The integral equa- 1   , f 
tion for the field (in the absence of an explicit incident wave) 9°"(x) = ~("M ' v) f       ds'{[n{x') ■ V'G(x.x')lr(x') 
is-[4] "     . Js*n' 

+ G(x.x>(x')} (26) 

öv;x= 4       ds'{[n{x')-X"G(x.x')]vix') or 
JS~\Y '      ' 

~ G<*-*>1*')} (20)     la(x) = f^ ds'{[n(x) x VG(x.x')] ■ [h(x') x rv(x')] 

for x on SeW. The Helmholtz kernel G(x. x') is given by _ k2(n(x) • n(x'))G(x. x')v{x') 

_,      ,.       (\H^(k\x-x'\)    in 2d -n(x)VG(x.x>(x')} (27) 
t^x.x ) = < f,t,x.,-. (2i) 

I  ix-x | ln 3d for x on S ~W. The first form is more compact (and for that 

m reason is employed below), the second more convenient for 
where   H0     is  the  zeroth-order  Hankel   function   of the numerical computation. For Neumann boundary conditions on 
first kind.  For Dirichlet boundary  conditions  on  5  (i.e.. S (i-e- c(x on S) = 0). we have 
f(x on S) = 0) we have 

, 0 = -(n(x) • V) f ds'{n(x') ■ V'G(x.x')]^(x') 
0=4       ds'G(x.x')a(x') Js 

Js?\v ,_._,__,   _,   f    , ,,    

- J ds'ln(x') • V'G(x. x')]ti-(x') (22) 
- fn(x) • V) /   ds'{[n(x') • V'G(x.x')]^(x') 

+ G(x.x>(x')} (28) 

for x on 5 and for x on 5 and 

-v(x) = ^ <fc'G(x.x>(x') ia(x) = -(n(x) • V) J ds'{n(x') • V'G(x.x')Mx') 

+  f ds'[n(x') ■ V'G(x.x')]V(x')      (23) - (n(x) • V) /  <fa'{[n(x') • V'G(x.x')]^(x') 

for x on W. Equations (22) and (23) along with either (12) + G(X-XXX')} (29) 

or (18) form a set of coupled integral equations to be solved for x on W. Combining (28) and (29) with (18)   we can 
for „:(x) on W   and a(x) on 5 e W. Using (12) we can eliminate a and write the following integral equations for ^(x) 



in terms of the known quantin- dv°m{x)/'dz: 

f      . ,   dvoux 

2/     d* :fl • VGiX.X  I'——IX  I 
Jw öz 

= lh-V) [ ds'[ti ■T'G(x.x'Y)vtx') 
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Then, by substituting (32K35) into (12i. and applying the 
testing operator Jlvdsf,ix)- to both sides of the resultant 
equation, we arrive at the discretized form of 1121 

21'"' = v"'?"' - \"U7U 

where 

- in • V) /   ds'\n ■ V'Gi'x.x')')f(x') 

/  ds'ih-VG(x.x')) f ds"Hix'.x")vix"-<   (30) 
hr Jw 

1'"' = ^•""'■(x'lf'.ix 

for x on 5 and 

5rou: 

-V    =  /   dsfi(x)f}ix'i 
Jw 

,-sOV' — (xi-2/   ds'ih ■ VGix.x'ih (X'; 
Ö- Jw "     ÖZ 

= in-Vi I ds'ih' ■ V'Gix.x'))v(x') 

-in-V) / <fc'(h'-V'G(x.x'))u(x') 

- - /   ds'H(x.x')v\x) 
- Jw 

- I ds'ih ■YG(x.x')) f ds"H(x'.x")v(x")   (31) 
Jw Jw 

for x on 11*. 

D. Discretization 

While analytical solutions for waveguide modes are known 
for a few special cross sections, in general, modes must be 
computed numerically. Even when analytical solutions exist, 
it is more convenient (from a computational perspective) to 
use numerical solutions because then all interacting surfaces, 
whether physical or intangible (e.g. waveguide apertures), can 
be treated equivalently. 

Assume the waveguide aperture has been discretized into 
a set of patches that support M basis functions /m(x). 
Following the procedure given in the Appendix, we can write 
approximate expressions for the A: lowest waveguide modes 
in terms of basis functions defined on the aperture 

M 

Unix) = Y^ Anmfm(x). (32) 
m = l 

In the usual method of moments fashion, we approximate 
the field %• and its normal derivative a on the aperture as 
linear combinations of the basis functions with unknowns 
coefficients 5^' and 1% 

M 

X])' = f  ds f  ds'f,{x)H(x.x';f,ix' 
Jw     Jw 

= [(.4A'"';iTA..4.\ 

and 

A„ = ^6 
IK 

(361 

(37ai 

(37b i 

(37c) 

(38) 

A similar procedure produces the discretized form of (IS). 
namelv 

W rW vllfll- 

where 

2V"  =A-"7"'-X-"'S 

Ä,']' =  I  ds I  ds'f,(x)H{x.x')fj[x'\ 
Jw     Jw 

= [(.4.V"')rA(.4.V"')]0 

and 

(A"1! 

(39) 

(40a) 

(40b) 

(41) 

vix) « £ S%fm(x) (33) 
m=l 

M 

<T(X) «   Y,  tifmW- (34) 
m=l 

We also approximate H{x.x') as a truncated sum over the Ar 

computed modes 

■v Z 
H(x.x')*Y-iun(x)un(x'). (35) 

Equations (12) and (18) and their discretized equivalents 
(36) and (39) may be viewed as nonlocal inhomogeneous 
boundary conditions that must be obeyed on the waveguide 
aperture. They are nonlocal because the "surface impedance" 
terms A'" and A"" relate the field at one point on the aperture 
to its derivative not just at the same point, but everywhere on 
the aperture, and vice versa. The equations are inhomogeneous 
if excitations 1'"' and V'u' are nonzero. 

The discretized forms of the coupled integral equations 
for Dirichlet boundary conditions on 5 are obtained by first 
approximating the source on 5 in terms of basis functions as 

.u 
<7(X) «   £ Iifm(x) (42) 

m=l 

then substituting this approximation and the approximate ex- 
pressions for ui(x), a(x), and H(xx.x'±) on W into (22) 
and (23) and finally applying the testing function operator 
Isew dsftix)- to both sides. The result in block matrix form 
is 

-2Ysu'(Nlv)-lVw 

irW 

\ZSS    Zsw + YSW(NW)-*XW 

[zws zww _ ixw 
Is 

jW (43) 
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where 

ds       ^71(x)(h'-rG(x.x'))/,ix"l      (44) 

Using (12) to eliminate r(x). we arrive at the discreuzed form 
of C 

Zr/ = I dsj^ ds'fi(x)G(x.x')fjlx') 
In   — 2_^, -^nml t — A      7      ,„,. Of I 

(45) 

with S or W replacing Q and 3. 
An analogous result is obtained for the case of Neumann 

boundary conditions on 5. We approximate the source on S 
as 

Similarly, we may decompose the longitudinal derivative of 
the field as 

dv(x) 

dz 
= y 7~i„ur.(x 

M 

r(x) « Y, Sifmlx) (46) 
m = l 

substitute this expression and the approximate expressions for 
t-fx). a('x). and H(x^.x'±) on W into (28) and (29) and then 
apply the testing operator. The result is 

2ys"'(A:U'r1ru' 
-v"'' 

where 

Then, usins 

f    , ,dv:x' 
7)„   =    /      d.<!Iin|Xi  

Jw oz 

di!)(x)      <9rm(x)      dvom(x) 

(X-'l 

(56) 

(37) 

Zss    Zs"' - i"SH'(Ar"')-iÄ-»' 5^ 

where 

-SH' 
ds/ _ds7.-(x)(n-VG(x.x'))/j(x') 

(47) 

(48) 

dz dz dz 

and (18). we can write 77°"' and fj™ in discreuzed form as 

C'=-E-4-f-' (58) 

^ = / d$ I ds'\f^hW x ^G(x.x')] ■ [n(x') 

x V7,(x')l-^(n(x) • ri(x'))/i(x)G(x.x')/J(x')] 
(49) 

with 5 or W replacing Q and 8. 

E. Modal Decomposition 

In preparation for computing the power flowing across the 
waveguide aperture in either direction, it is useful to write v 
and dt/dz in terms of modes propagating in either direction. 

By employing the completeness relation for the modes we 
can decompose the field on W into a sum over modes as 

and 

F. Power 

C = -^-4nm(f"-+Ä-"5"-)n (59) 

The time-averaged power-flow density vector (the scalar 
equivalent to the Poynting vector) is [5] 

1 
(S(x)) = -Re[icwti-(x)Vf(x) (60) 

where c is a constant. 
The total power flowing across the waveguide aperture in 

the z direction is made up of an incoming part associated 
with the incoming pans of ib and dtb/dz and an outgoins part 
associated with the outgoing pans of v and dti'/dz. Jht total 
power exiting (entering) the waveguide aperture is given by 

r(x) = Y^nUnix) (50) 

where 

P° =  I  ds(Sa(x)-z) 
Jw 

dsRe icwü:a{x) 
diba(xY 

dz 
(61) 

r for a - out (in). This integral is most conveniently evaluated 
Vn = Jw dsu«Wv(.x) (51)    by decomposing iba and frlf/dz into their modal compo- 

nents. The reason is that since the modes are orthogonal, the 
power in the sum over modes is equal to the sum of the powers 
in each mode. 

The amplitude of the nth outgoing (incoming) mode con- 
tained in i!>(x) is n°ut (77JJ1). Therefore, the time-averaged 
power exiting (entering) the waveguide aperture is 

is the amplitude of the nth mode contained in ib(x). It is useful 
to further decompose v(x) into its incoming and outgoing 
components 

^(x) = pin(x) + ti'out(x) (52) 

Since the discretized representation of ttout(x) is siven bv 
T/U 

we may write the discretized form of n°m as 

out _ \p   .        ,-«• 
Vn      —   /     Anm\        ■ 

P° = cwk J2 
2Z„ (62) 

(53) for a = out (in), where nmax is the largest value of n for which 
0n is real. We exclude modes with imaginary propagation 
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constants since such modes do not transport any power into 
or out of the guide on average. 

The amplitude of the nth outgoing (incoming) mode con- 
tained in dvjdz is 7j°ut (77^). Therefore, the time-averaged 
power exiting (entering) the waveguide aperture is 

F"4Y. 
for a = out fin). 

1) Acoustic Waves: If r is the velocity potential, i.e.. v = 
\V. and p is the mass density, then the constant c in (60) is 
siven bv 

c= p (64) 

Furthermore, the acoustic impedance  [5] is related to our 
modal impedance by 

yacoustic        "^     r? 
(65) 

2) Electromagnetic Waves in Two Dimensions: Suppose a 
waveguide whose axis is parallel to z is also translationally 
invariant in the y direction, i.e.. the waveguide consists of 
a pair of half-infinite plates parallel to the yz plane. When 
a geometry is translationally invariant in one direction, the 
electromagnetic scattering problem can be decoupled into 
two independent problems, each of which is isomorphic to 
a 2-D scalar scattering problem with a different boundary- 
condition. If the 3-D surfaces are perfectly conducting, the 
boundary conditions for the corresponding scalar fields on 
the corresponding 2-D surfaces become either Dirichlet or 
Neumann. 

Solutions to the scalar waveguide problem with Dirich- 
let boundary conditions inside the waveguide correspond to 
solutions to the electromagnetic waveguide problem with 
exclusively TE modes inside the waveguide accordins to 

E(x) = v»x.    Hi» = -—x x z    Dirichlet/TE     (66) 

and solutions to the scalar waveguide problem with Neu- 
mann boundary conditions inside the waveguide correspond 
to solutions to the electromagnetic waveguide problem with 
exclusively TM modes inside the wavesuide according to 

and we associate TE-polarized electromagnetic scatterinc with 
solutions to the scalar scattering problem with Neumann 
boundary conditions according to 

Hix  = i-i'x'iv.    Ein = 
en r 

ri x y    NeumannTE    16Q' 

H(x) = v(x)x.    E» = %^-z x x    Neumann/TM.   (67) 
IJJC 

Note how the correspondence between TM or TE polar- 
ization and Dirichlet or Neumann boundary conditions in the 
waveguide mode case differs from the correspondence between 
TM or TE polarization and Dirichlet or Neumann boundary 
conditions in the case of scattering from perfect conductors. 
On a perfect conductor we associate TM-polarized electromag- 
netic scattering with solutions to the scalar scattering problem 
with Dirichlet boundary conditions according to 

E(x) = i)(x)y.    H(T) = ^y x ri    Dirichlet/TM    (68) 
VuJ ß 

where y is the direction of translation^ invariance and ri is 
(63) the outward surface normal. Therefore, the waveguide-excited 

electromagnetic scattering problem with TM (TE) polarization 
in which all the scattering surfaces are perfect conductors, is 
equivalent to the waveguide-excited scalar problem, in which 
Neumann (Dirichlet) boundary conditions hold on the inner 
walls of the waveguide and Dirichlet (Neumann) boundary 
conditions hold on all the surfaces of all the scanerers. 

For electromagnetic waves in two dimensions, the constant 
c in (60) is given by 

f -^r    Dirichlet/TE 
c - < ß-~    „ (70) 

{^7    Neumann/TM 

where ^ and f are appropriate to the material inside the guide. 

in. ELECTROMAGNETIC WAVEGUIDE EQUATIONS 

A. Modes 

The electric and magnetic fields inside a waveguide with 
perfectly conducting walls can be decomposed into modal 
components just as the field and its normal derivative were in 
the scalar case. The essential difference is that now there are 
three distinct categories of modal fields, namely TM. TE. and 
transverse electromagnetic (TEM): each is a vector function 
rather than scalar function. For our purposes, it is sufficient 
to, consider only the transverse components of the electric 
and magnetic fields. Assuming the guide is uniformly filled 
with a nondissipative medium having dielectric constant e and 
magnetic permeability ß. we may write4 [6] 

E±(x±.z) = J^(ave'3-: + bne-'3"z)un{x±) (71) 
77 

H_(x_» = ^(ane"5"-- - bne-'3":)±-i x u„(x,) 

(72) 

where the modal impedance Zn is given by 

—      C %■.    for ?7 € TM modes 
Zn = y - x \ 1.      for n € TEM modes (73) 

^.    for n e TE modes. 

The modes are the eigensolutions to the transverse Helmholtz 
equation 

(Vi + fc2-fl>„(xi) = 0 (74) 

for x^ inside the waveguide aperture W and un(xj_) con- 
strained by the perfect electrical conductor boundary condition 
on d\V. With proper normalization, the modes form a complete 

''As in the scalar case, cutoff modes are neglected. 
5 6 (x - x') is a tensor distribution, which, for any vector-valued surface 

functions f(x) and gixl on W obevs 

/    ds'flx)- 6 (x-x') -g(x') = fix) -g(x). 
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and onhonormal set of functions over \Y. i.e.. where the dvad 

^Un(X_IUn('x_l =?   >X_-x'_" 

£jZ X Un(X_))(Z X Un[X^)i =(■>"   ix_ - x' 

H (X_.X_; = J2ZnUn x_ ut;,x (SI 

and 

is the analogue of the scalar function Hix_.x'_'. Droppinc 

Completeness5    (75)    me spatial C00rdmaIe -• we ?et me following expression for 
the waveguide integral equation on  II". which relates the 
transverse components of the electric field, the magnetic field. 

/   dx_um(x_ i • u„ix_ i = tmn    Orthonormalitv.    (76)    and the specified electric field waveguide excitation on \Y: 

B. Computation of Vector Modes from Scalar Functions 2E_u,(xJ = E_lx_'i -   f  dx'_ H [x_.x'_\ 

The TM and TE modes can be deduced from the solutions H     . "., 
to the scalar Helmholtz equation on W with Dirichlet and ''Z X     -lx-';-                              (S2) 

Neumann boundary- conditions, respectively, on d\Y [6], The    Defining equivalent electric and magnetic currents on W bv 
TM mode corresponding to the nth scalar waveguide mode 
rn(x_ i obeying Dirichlet boundary conditions on dW is J(xj_) = z * H_(x_)                        (83) 

„  ,v   -, _ V-vn(x_) M(x_) = -z x E_ix_:                     (84) 

/k2 -3? 
.  ,    _ V * ^'ows us t0 write the waveguide inteeral equation in terms of 

and the TE mode corresponding to the nth scalar waveguide    equivalent currents as 
mode f„(xx) obeying Neumann boundary conditions on d\V 
is 2EHx,) = zxM(x,)- /  dx'±H[x_.x'J-3(x'!). 

z x V i v (x   ) ^^ 
un(x_i =  ~      ,     ■ (78)    If Hlut(x_.-) is specified instead of E°J"(x^.z). we may 

\/k~ — 3n write 

TEM modes are possible if and only if W is multiply H_m(xx.O) = J^an—z x un(xj 

connected, in which case the}' are related to solutions to the 
electrostatic potential problem on W. The TEM mode corre- = - Y(an + &„)— z x un(xx) 
sponding to the solution C„(x) to the electrostatic potential "   n                  Z" 
problem on W" with all except the nth boundary at zero _,  lr-   1  , 
potential is eiven bv                                              ' o 2^ ~7~(an ~ "" )z x un(xx) 

-   „   z'n 

Un(xx)x V_Cn(x±). (79) _l ,  1   /•      ,   r 

The scale factor should be chosen to enforce orthonormalitv ~ 2    -(X"L'0) + 2 /„• rfx- H (x±-x^ 
for the TEM modes. This amounts to assigning a particular • (z x Ex(xx.O)) (86) 
value to the otherwise arbitrary potential on the nth boundary. 
For all TEM modes. 8n = k. '      wnere the dyad 

C. Waveguide Integral Equation 5 /„       > >,     Y^   
! t- <     \w- /  / ^ 

\    J H(xx.xx) = ^F(zxuT1(xx))(zxun(x'x))     (87) 
Let h,_ (x±.z) be the transverse component of electric "     " 

field for a specified outgoing wave. Using the modal expan- ■   . 
sions and the first completeness relation for the modes we can ''      analo?ue of *e scalar distribution H(x±, x'x). Dropping 
write the following expression for Ex

ut(x ,   0) in terms of the SpaMal coordlnate z< we §et ^ alternative form of the 
transverse components of the electric and^maenetic fields on wave2uide lnte§ral e1uat>°n 
W:                                                   '            ~ /■ - 

2H°ut(xx) - Hx(x_) +j _dx'± H (xx,xl) 

EIut(x±.0) = ^anUn(xx) •(zxEx(x'x)
1) (88) 

n 

1 r-v or in terms of equivalent currents 

l"_ ! 2Hr(xx) = -z x Jx(xx) - /  dx'± Ö (xx.xx) 
+ -£Zn(an-6n) — un(x_) ■/*• 

"   n Z" -Mx(xx). (89) 

1 l   r - 
= ^E_(xx. 0) - - /   dx'_ H (xx.xx) Equations (85) and (89) are the electromagnetic counterparts 

- "       TT   ,  ,    ~   "' of *e scalar waveguide integral equations given in (12) and 
•(zxH_(xx.O)) (80)    (18). 
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D. Discretization 

As slated above, the TM and TE vector modes on \Y are 
derivable from the scalar modes on \Y with Dinchlet and 
Neumann boundary conditions on d\Y. respectively, and the 
TEM vector modes (if any) are derivable from the solutions to 
the electrostatic potential problem on 11". One can compute ap- 
proximate solutions for the scalar modes and the electrostatic 
potential by putting scalar basis functions on \Y and followins 
the procedure given in the Appendix. Once this has been 
accomplished, one has to choose between keeping the repre- 
sentation of the modes in terms of the scalar discretization or 
convening it to an equivalent vector discretization. If the scalar 
discretization is kept on the aperture, specialized code must 
be written to handle interactions with the waveguide aperture. 
On the other hand, if the waveguide modes are convened to 
a vector discretization early on. then the interactions between 
the various scattering surfaces, whether physical or wavesuide 
apenure. can be handled in a consistent fashion, i.e.. entirely 
in terms of vector basis functions. For computations involving 
more than just the waveguide alone, we find the later choice 
to be the simplest and cleanest to implement. 

If we discretize the electric current J(X_L) and masmetic 
current M(x_) on \Y in terms of M vector basis functions 
fm(x_) using 

.v 

J(x_)a£/^fm,x_) (90) 

Similarly, the discretized form of the second waveguide inte- 
gral equation (89) becomes 

2f"' = .Y"7"'-.V"'5,!' ,9-, 

where 

I";"' =  /  flx_Hou:;x   ..;f. ■X_ ' \z ■ 

X))  = /   a'x_ /   dx'if,:x_   xz-Hix   .x 
Ju- J]\ ~     - 

■ ifjix'_, X Z ' 

(9Sa» 

fiB-V"')rÄ!5.V"' 

and 

= ;.r 

(98b) 

(99i 

E. Coupled Integral Equations in the Perfect Conductor Case 

Suppose the waveguide \Y is the primary source of radiation 
for a general antenna problem in which all other scattering 
surfaces S may be treated as perfect conductors. If there are 
no other sources, the electric field integral equation (EFT£) for 
x on S S \Y is [7] 

0 = --ri(x) x M(x) - /      ds'\i^J\ - — V'V 
Js~\v      [      V       k2 

x G(x.x')-Jfx')- V'Gix.x') xM(x' 
777 = 1 

(100) 

M(x_)*£s£'(fm(x_)xz, (91) 
m = l 

we may write the first waveguide integral equation (85) in its 
discretized form as 

where 

21'"  = Vlr5u — YIr/,r 

dx_Elu:ix_)-f1(x_) 

■V" = /   dx_fi(x_).fJ(x. 

(92) 

(93a) 

(93b) 

The tangential component of the electric field vanishes on a 
perfect conductor: hence. M = 0 on S. At this point, we could 
rewnte the above equation in the separate forms appropriate 
to x on 5 and x on W and eliminate M on W by means 
of (85). thereby obtaining a set of coupled integral equations 
for the fields on 5 and \Y. just as we did in the scalar case. 
Then we could convert them to discretized form. Alternatively, 
we could discretize (100) as it stands, eliminate the unknown 
equivalent magnetic current amplitudes on W using (92) and 
achieve the discretized form directly. For brevity, we follow 
the latter approach. 

A discretized version of (100) in block matrix form is 

'Is 

■v" =       dx_       dx'Ji(x±)- H (x_.x'_) ■ {}{x'x) 
Jw 

Zss 

z\vs 
zs\v 

Z"',r 

y-sir 

_i V11' 
2J> 

and 

[(BA'"')rA(B.V"')]0- 

um(x) = ]^ßmnfn(x) 
n 

\        — 7   f- 

(93c) 

(94) 

where 

(101) 

■ f/(x') 

x.x' 

(102) 

We get the elements of Bmn by computing inner products of 
the vector basis functions with gradients of the scalar basis 
functions. For example, if um corresponds to a TM mode it 
is clear from (32), (77), and (94) and the definition of A""' 
that the entries in the mth row of 5mn are siven bv 

(95)       V-J = JQdsJ3 ds'{°(x) ■ (Y'G(x.x') x (ff(x') x ri')) 

(103) 

with S or W replacing a and ß and Is representing the block 
of unknown cun-ent amplitudes on 5, which is related to the 
electric cunent J on 5 bv 

B, ™=;7^?^Idx-v-/j(xJ 
"i    jk 

■f^(xi)((.Y"-)-1)„. (96) 

J(x) 

Rewriting (92) as 

S"' = 2(.V"')-1V"' 

-E1^ :(X). 

(Ar U'l-l^-lV T-U 

(104) 

(105) 
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we can eliminate the block of unknowns SH  in favor of /"' 
to obtain the discretized version of (1001 in its simplest block 
torm 

r-2}-5"'(Jv"'i-1r"' 
V"" 

zu's 
zss    zsir^ysir(A-,rr; |r/5 

Z inr 
*A" 

-ir /' 
(106) 

F. Modal Decomposition 

By employing the first completeness relation for the modes, 
we can decompose the transverse pan of the electric field into 
a sum over modes as 

E_(xi = ^77r,url(x) (107) 
n 

where 

Vn =       dsun(x)-E_(x) (108) 
■Al- 

is the amplitude of the nth mode contained in E±(x). It is 
useful to further decompose Ej_(x) into its incoming and 
outgoing components 

E_(x) = E^(x) + Elut(x). (109) 

Since the discretization of E7"(x) is given bv F"\ we may- 
write the discretized form of 7?°m as 

out     y- _,     rir 
(110) 

using (85) to eliminate Ej_(x), we arrive at the discretized 
form of T]

1
" 

vZ = Y,Anm(Vn\XwIw 
(111) 

Similarly, by employing the second completeness relation 
for the modes, we may decompose the transverse part of the 
magnetic field as 

H_(x) = ^?7n(z xun(x)) 

G. Power 

The  time-averaged  power-fiow-densirv   vector  (Povntins: 
vectori is [6] 

(Six)) = ^Re'E xH ill" 

The total power flowing across the waveguide aperture in the 
z direction is made up of an incoming pan associated with the 
incoming pans of E_ and H_ and an outgoing pan associated 
with the outgoing pans of E_ and H_. The total power exiting 
(entering) the waveguide aperture is given bv 

Pa =   /     ds(Sa(X!-Z 

1 
a'sReEQix; Hf (118) 

for a = out (in). This integral is most convenientlv evaluated 
by decomposing E° and H° into their modal components, 
since the modes are orthogonal and the power in the sum over 
modes is equal to the sum of the powers in each mode. 

The amplitude of the nth outgoing (incoming) mode con- 
tained in E±(x) is 7£ut(0. Therefore, the Time-averaged 
power exiting (entering) the waveguide aperture is 

P„=E^ !"n 

'Zn 
(119) 

for a - out (in) where nmax is the largest value of n for which 
3n is real. We exclude modes with imaginary propagation 
constants since such modes do not transport any power into 
or out of the guide on average. 

The amplitude of the nth outgoing (incoming) mode con- 
tained in H_ is 77°ut (Tjjf). Therefore, the time-averaged power 
exiting (entering) the waveguide aperture is 

pa 
"■max ZnK\- 

(120) 

for Q = out (in). 

IV. EXTENSIONS 

(112) 

where 

f)n=       ds{zxun(x))-H±{x). (113) 
Jw 

Then, using 

Hi(x) = HJL
n(x) + Hr(x) (114) 

and (89), we can write 7?°ut and ij™ in discretized form as 

C^-E-4-^' (115) 
m 

and 

Up to this point, we have assumed that all energy coupled 
into incoming traveling modes is completely absorbed. It is 
possible (at the cost of some extra complication) to relax this 
assumption, as we now demonstrate for scalar scattering. 

Suppose a uniform waveguide is terminated after length L 
by a wall (oriented perpendicular to the axis of the guide) 
whose reflectivity for the mth waveguide mode is rm. For the 
time being, assume no independent sources are located inside 
the guide. Every mode that enters with amplitude bn, exits with 
amplitude an = rne

i3»2Lbn, i.e., if #n(x) = £„6nun(x) 
comes in, then #>ut(x) = £n Tne^

2Lbnun{x) goes out. 
This expression for ^out(x) can be rewritten as 

rut(x) -L ds'R(x.x')iP'm(x') (121) 

where 

<=-X>-n(V>H'+Ä-"'S"') (116) Ä(x.x') = Y,rnel3"2Lun(x)un(x'). (122) 
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After discretization. (121) becomes 

,V"'5ou! = I.4A'"' )TRiA.X"')SiB (123) 

where R is a diagonal reflectivity matrix whose elements are 

R,j=rie
i3'2L?,:i. (124) 

A boundary condition relating v and <r on II' can be obtained 
by applying the operator /„. ds'ihx.x'i ~ Rtx.x'))- to both 
sides of (12; and using (52). The result is 

/   ds'(6(x-x')~Rix.x')) [ ds"H\x'.x")c{x") 

V. SUMMARY 

As the previous discussion illustrates, the equations that 
describe scattering interactions with waveguides can be rm: 
into simple forms that are common to scalar scattennc and 
vector scattering. For example, the boundary condition on a 
waveguide aperture may be written in both cases a^ 

2T"' = .\ tr ~ir 
- A-""/' 

di'ifix.x' * - R[x.x'))i-[x') (125) 

(126) 

or in discretized form 

i,A,r - fi)(A-"'r:A-"7"' = (jV"- _ R]Sxr 

The discretized relation takes a particularly simple and 
appealing form if: 1) the basis functions used on II' are 
orthonormal in which case A"' = 1 and 2) if as many modes 
are computed as there are basis functions on W in which case 
-4  .4 = 1. Then (126) is equivalent to 

where 

and 

TXU Iw = ^H 

r,. = L4ri.4],, 

1 + r„ 

1-7V 

(127) 

(128) 

(129) 

is  the  diagonal  transmission  matrix giving  the  amplitude 
transmission of each mode at the waveguide aperture. 

It is easy to modify these relations to allow for a specified 
outgoing wave. Suppose the field ü5Pecix) is specified as being 
emitted from the aperture in addition to the reflected wave i e" 
.r°ut(x) = U»P«IX) - vrefi(x). We use vrefl(x) here to refer 
to the quantity on the left side of (121). The result is 

/   ds'(6(x-x') + R(x.x')) f ds"H(x'.x")a(x") 

ds'(6(x.x') - R(x.x'))v.ix') - 2rspec(x). (130) 1 
Its discretized form 

2Fspec = (A.„- _ Ä)5„- _ (ArH- + Ä)(A-H-rlA.U-7H- 

(131) 

is the obvious analog to (36) and reduces to it for R — 0. 
Even more generally, one can imagine the situation in 

which each incoming mode can be scattered into one or more 
outgoing modes. Any number of practical effects (such as 
nonuniformities in the cross section or imperfect termination) 
could cause this to happen. In such a case, the reflectivity 
matrix R contains the amplitude for every mode to scaner 
into every other mode and is no longer diagonal. 

Analogous results obtain for the alternative form of the 
scalar waveguide boundary condition and for the vector cases. 

or 

2r"' = A •UTU' _ yie <Mr 

(132) 

(133) 

In the scalar case, the unknown amplitudes /" and 5"' 
are related to the field r and its longitudinal derivative r 
according to (33) and (34): the matrices A'"'. A""', and A'" 
and the vectors I'" and I'"' are given by (371 and (40). 
In the vector case, the unknown amplitudes /"' and 5"' 
are related to the equivalent electric and magnetic currents 
J and_M. according to (90) and (91): the matrices A'"'. A'"', 
and Ä" and the vectors I'"' and I""' are given by (93) 
and (98). The discretized equations for scalar scarterins when 
IV obeys the waveguide boundary condition and 5 obeys 
Dirichlet boundary conditions [see (43)] are also identical 
to the equations for vector scattering when II' obeys the 
waveguide boundary condition and S is periectlv conducting 
[see (106)]. The commonality extends to the expressions for 
power transport into and out of the waveguide as well. 

APPENDIX 

Construction of the X and X matrices that appear in the 
discretized expressions for the waveguide boundary condition 
requires an approximate representation of the eigenmodes in 
terms of basis functions on patches covering the waveguide 
aperture as well as the eigenvalues associated with these eigen- 
modes. For a few geometries such as rectangular waveguide 
and coaxial waveguide, complete analytical solutions for the 
eigenmodes are known. In such cases, it is a simple matter 
to calculate the projection of a given eigenmode onto the set 
of basis functions. In the general case, an eigenvalue equation 
must be constructed for computing the modes. 

In this Appendix we describe a means for computing the 
modes of cylindrical waveguides of arbitrary cross section. 
There are three subsections. The first and second subsections 
describe methods for numerically solving the scalar Helmholtz 
equation for the waveguide modes when the waveguide walls 
obey either Dirichlet or Neumann boundary conditions, respec- 
tively. The third subsection describes a method for numerically 
solving the scalar Laplace equation for the electrostatic poten- 
tial of a multiply-connected cylindrical waveguide, all but one 
of whose surfaces is held at zero potential. 

The Helmholtz modes are directly applicable to scalar prob- 
lems such as acoustic radiation and scattering. The Helmholtz 
and Laplace modes are applicable to electromagnetic radiation 
and scattering problems in that the TM and TE modes can 
be deduced from the scalar Helmholtz modes with Dirichlet 
and Neumann boundary conditions, respectively, and the TEM 
modes are derivable from the scalar Laplace modes. The 
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correspondence is described further in Section ILT-B of the 
main text. 

We will assume the availability of scalar basis functions that 
are continuous across patch boundaries. A simple example of 
such a basis function is a function that spans two triangular 
patches sharing a common edge and whose value goes linearly 
from unity on the common edge to zero at the opposing 
vertices. The extension of continuous scalar basis functions 
to higher order polynomials in the surface parameterization 
results in three types of basis functions that may be classified 
according to whether they span two patches that share a 
common edge, span multiple patches that share a common 
vertex, or have single patch support. Basis functions of the first 
variety go to zero at the opposing vertices and are nonzero on 
the common edge: basis functions of the second variety go to 
zero on all edges not touching the central vertex (where they 
are nonzero): basis functions of the third variety are zero on 
the boundary of a patch and nonzero in its interior. 

A. Scalar Helmholtz Modes 

11 Dirichlet Boundary Conditions on d\Y: Operating on 
both sides of (5) by /,.,. dx_fm(x±) turns it into an integral 
equation, which may be written as 

- j   dx_fm(xJ(V± ■ V±Un(xJ) 

= (fc2 - 3n)       ^/m(xJun(x.J.        (134) 

Integrating the left-hand side by pans and applying Gauss" 
theorem to convert one of the resulting surface integrals into 
a boundary integral, we get 

/   rfx_V_/m(x_)-V_un(x_) 
Jw 

- f     dlfm(x_){e±(x^) ■ V_un{x , )) 
Jaw 

= ik°' ~ ft) J _ dx±fm(x±)un(xx)      (135) 

where e_ (xx) is the unit edge normal to dW at x i. The 
unit edge normal is in the plane of W and points into the 
waveguide wall. 

The Dirichlet boundary condition demands that un(xx £ 
3W) = 0. If we expand the modes un in a set of basis 
functions fm that are continuous and vanish on the boundarv 
of W. i.e.. 

Un(X±)=J2AnTnfm(x±) (136) 

then the boundary integral term vanishes and (135) becomes 
a generalized eigenvalue equation for the mode coefficients 

£ Mmm.Anm, = (k°- - ßl) £ A-mm,.4nm,        (137) 

where 

Amm' = J   dxxf7n{x1_)fm,(x1_) (138) 

AW s j   dx_Vxfm(x_) • V_/m,(x_).     (139) 

2) Neumann Boundary Conditions on d\Y: The Neumann 
boundary condition demands that ie_ • V_ iun\x_ i o\Y = 
0. If we had basis functions whose values were nonzero or. 
the boundary but whose edge derivatives vanished on the 
boundary, we could construct the modes directly from them. 
just as we did in the Dirichlet case. Since we do not. we need 
to augment our usual set of basis functions on the interior of 
II with extra basis functions associated with the boundary of 
II . Edge-based basis functions supported on the patch pairs 
(one each from 5 and IT") that share a common edse on dW 
comprise this set. 

The generalized eigenvalue equation again derives from 
(135) and (136). In this case, however, the unknown coeffi- 
cients Anrri also need to obey the added constraint that the edse 
derivative of each eigenmode must vanish on the boundary. We 
may write this constraint in integral form as 

an 
dle±(x_) • V_un(x_) = 0 (140^ 

which, after substituting the discretized approximation for un. 
becomes 

/ , CmAnm — 0 (141) 

where 

C„ : /     dle_(x_)-Y_fm(x_). (142) 
Van- 

Thus, we seek solutions to the eigenvalue equation 

X>W - Lmm.)Anm. = (k? - 31) £ Nmm.Am 

where 
(143) 

Ljnm' = fd„.dlf™[x±)i*-(x^ ■ r^/-'(x_))      (144) 

and the matrices M and N are defined as in the Dirichlet case, 
subject to the constraint given by (141). 

We can subsume the constraint information directly into 
the eigenvalue equation by use of the projection operator P 
defined by 

P=l-CT(CCT)-lC (145) 

where C is given above and 1 represents the identity matrix of 
the proper dimensionality. P has the property that it reproduces 
vectors x that obey Cx = 0 and it annihilates vectors that 
do not. P also has the property that the vectors z that 
simultaneously obey the eigenvalue equation Qx = Ax and 
the constraint equation Cx = 0, are the same vectors that 
obey the eigenvalue equation 

PQPx = \x. (146) 

Applying this to (143), we obtain the following the generalized 
eigenvalue equation for Neumann boundary conditions: 

£ [PN-\M - L)P]mTnlAnm, = (fc* - £)Anm.   (i47) 
m' 

Rows of A (i.e., eigenvectors) corresponding to eigenmodes 
that do not obey the constraint will vanish (to numerical 
precision) when left multiplied by P. All such eigenmodes 
and eigenvectors should be discarded. 
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B. Scalar Laplace Modes 

We seek solutions u„ix_) that obey the Laplace equation 

V2_un(x^) = Q (148.) 

inside W and vanish on all boundaries of \V except one 
(call it d\Vn), where we may arbitrarily set it to unit}-. Since 
our basis functions vanish on the boundary, we need to 
construct a special function vn(x_) that is continuous and 
evaluates to unity on dW„. For example, given triangular 
patches parameterized by the three (nonindependent) triangle 
coordinates K,. u2. and u3. we could take vn - 0 on all 
patches that are not in contact with the boundary. vn = u, 
on all patches that have the vertex a, = 1 on the boundary, 
and i.n = 1 - u, on all patches that have edge u, = 0 on the 
boundary. Then we want to approximately solve 

Neu York   Percamc 

Y- vn[x_ E- ■fn = 0. (149) 

Applying the operator /„. dx_fm(x±) to both sides and inte- 
grating the resulting equation by pans produces the following 
linear equation for the basis function coefficients Anm. for the 
potential function associated with the nth boundary: 

£\\/mm<--W = /  dx_Y_fm(x_)-T.vn(x_)   (1 
•Ar 

50) 

where M is as defined in (139). 
To make normalized TEM modes out of these Laplace 

modes, we need them to obey 

1  =    /     rfx_UT,(T_)-Un(T_) 

dx  V .)• Vj.Un(j_) 

Jaw 

&-V-(u„(r)V,«„(rJ) 

l_^dx±V2
±un(x±) 

dlun(x±)(e±(x±)-V_un(x±)) 

d\V, 
dHe±(x±)-V±Un{x±)) (151) 

which means the coefficients of the discretized representation 
of wn must be scaled to make 

1 = l^ dle±(x±) ■ Vx \YAnn.fm.(x±)\ 

£-4-7 dle±(x_)-Y_fm,(x±) 
Jd\V„ 
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Problems Using High-Order Methods 
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Abstract—We demonstrate that a method of moments scatter- 
ing code employing high-order methods can compute accurate 
values for the scattering cross section of a smooth body more 
efficiently than a scattering code employing standard low-order 
methods. Use of a high-order code also makes it practical to 
provide meaningful accuracy estimates for computed solutions. 

Index Terms— Boundary integral equation, electromagnetic 
scattering, high-order numerical method, method of moments. 

I. INTRODUCTION 

A common misconception about method of moments solu- 
tions to scattering problems is that they cannot produce 

results accurate to more than a few decimal places. Such a 
limitation cannot be fundamental. The method of moments 
technique results from discretizing an integral formulation of 
the wave equation, which, in its continuous form, is exact. We 
expect that the solution to the discretized integral equation will 
converse to the solution of the continuous integral equation in 
the limit as the discretization scale size is reduced to zero, if 
finite precision effects are negligible. 

The problem with achieving high accuracy is not a fun- 
damental one but rather a practical one. and it stems from 
the almost universal use of low-order numerical methods in 
scattering codes. Low-order numerical methods, while simpler 
to implement, suffer from the fact that the computer resources 
(e.g.. memory and CPU time) required to achieve a given 
solution accuracy grow rapidly as the accuracy requirement 
increases. Even for scatterers only a few wavelengths in size, 
the computer resources required to compute cross sections 
to more than a few digits of accuracy may be excessive. 
High-order methods are specifically designed to overcome 
such limitations by reducing the incremental cost of accuracy 
improvements. 

FastScat™ is a general purpose, method of moments scatter- 
ing code [1] developed at Hughes Research Laboratories (now 
HRL Laboratories) that employs high-order methods in its 

Manuscript received September 22. 1997: revised July 24. 1998. This 
work was supported by the Advanced Research Projects Agency of the 
U.S. Department of Defense and was monitored by the Air Force Office 
of Scientific Research under Contracts F49620-91-C-0064 and F496">0-91 -C- 
0084. 

L. R. Hamilton. J. J. Ottusch. M. A. Stalzer. J. L. Visher. and S. M. 
Wandzura are with the Computational Physics Department of the Information 
Sciences Laboratory at HRL Laboratories. Malibu. CA 90265 USA. 

R. S. Turley is with the Department of Physics and Astronomv at Brigham 
Young University. Provo. UT 84602 USA. 

Publisher Item Identifier S 0018-926X199)04775-4. 

current basis functions, quadratures, and geometrv description. 
The focus of this paper is on the current basis functions and 
how they influence the convergence rate of computed cross 
sections for two dimensional (2-Dl scattering problems. We 
will demonstrate that high-order methods make it practical to 
achieve solution accuracies limited only by machine precision. 
Such a demonstration is not merely of academic interest. 
High accuracies at intermediate stages of the calculation are 
sometimes required to achieve even engineering accuracies in 
the final result. Furthermore, the ability to obtain accuracy 
improvements at relatively low cost has the added benefit 
that it becomes possible to obtain meaningful estimates of the 
accuracy of a computed solution [2]. Without some estimate 
of its accuracy, a computed solution is of limited usefulness. 

II.   SCALAR INTEGRAL EQUATIONS 

The electromagnetic scattering problem for a three- 
dimensional (3-D) scatterer that is translationally invariant in 
one direction can be decoupled into two independent problems, 
each of which is isomorphic to a two dimensional scalar 
scattering problem with a different boundary condition. In the 
TM case, the incident electric field is polarized parallel to the 
axis of symmetry: in the TE case, it is the incident magnetic 
field. The boundary conditions for the 2-D scalar scatterinc 
problem corresponding to a perfect electrical conductor (PEC) 
in 3-D are Dirichlet for TM polarization and Neumann for 
TE polarization. 

For the TM polarization case [v:(x' on C) = 0]. the electric 
field integral equation for PEC boundary conditions is 

(x) = - <f>   dl' G(x.x')a(x') 
c 

(1) 

where ©mc is the incident field and a is the surface charge 
density. It is defined as the normal derivative of the total field 
V on the surface, i.e.. 

<T(X') = •W(i') (2) 

where n' is the outward normal to the scattering surface at 
x'. The integral is taken around the contour C given by 
the intersection of the 3-D scattering surface and a plane 
perpendicular to the axis of symmetry. The kernel G is the 
Green function of the Helmholtz wave equation in 2-D, namely 

G(x.x') r'l) K'(k\x-x'\) (3) 

0018-926X/99S 10.00 © 1999 IEEE 
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/dl 
where Hu is the zeroth-order Hankel function of the first 
kind and k is the wavenumber of the incident field. Similarlv. 
for the TE polarization case firix' on Cl = U\. the electric 
field integral equation is 

-n- Vo'"riii = (h-V) j   dl'[n ■ VG(x.x'))v(x ).  (4) 

The correspondence between the scalar quantities r and a 
and the parallel (to the surface) components of the electric 
and magnetic fields is given by 

Ev(x) =(J;( x)z 

„ ,   ■      o\x) . 
hjx) = 2 x n 

in the TM case and 

Hv(x) =t-ix)z 

c  i    ■       a{x) ■ hu(x) = n x 2 
l.aJ( 

O) 

(6) 

(7) 

(8) 

in the TE case, where z is the direction of translational invari- 
ance. n is the surface normal, u) is the angular frequency, and e 
and ft are the dielectric constant and magnetic susceptibility of 
the external medium, respectively. All fields implicitly contain 
the time dependence factor ?'~'. 

A Galerkin method of moments solution [3] to the continu- 
ous scalar field equation. (I), proceeds by first expanding the 
unknown charge a[x) in terms of basis functions fj(x). 

a{x) = Y, Jjfj(x) (9) 

and then testing the equation with each of the basis functions 
by applying the operator §c ds' f,(x')- to both sides. The 
result is a matrix equation of the form 

V = ZI 

where 

and 

\]■= I   c//c'.inc(x)/,(x) 

:10) 

(11) 

Z,j=j>   dl j   dl'fi(x)G(x.x')fj(x'). (12) 

Similarly, we can discretize the scalar charge equation. (4). by 
expanding the unknown field as 

f(*) = £ Sjjj(x) (13) 

and applying the testing operators to arrive at the matrix 
equation 

where 

V = ZS 

Yi = -j   c//[n-V0,nf(*)]/,-(*) 

(14) 

(15) 

and 

Z,j = j>   d! f,[xhn ■ V) /   (//'in'-V'(,': X.X       I ,:X 

= /   dl  <f  dl' J,{X) 
Ida I 

^^■n,--^)Gix.x)]fr,x, 16b) 

= I  dl  I  dl' 

■   k2in-n)f,\x)f,lx') - — 
U,(x) Of AX''' 

- ! dll.l  )■ 
)i       or 

(16c) 

The second form for ZtJ is like the first in that it requires 
differentiating the kernel twice. In the first form thev are 
normal derivatives: in the second they have been convened to 
tangential derivatives by use of the Heimholt/ equation. Dif- 
ferentiating the kernel exacerbates the singularity of the kernel 
at x = x'. which is unattractive from a numerical standpoint 
unless some smoothing operator is applied to the kernel before 
differentiation. FastScat uses a high-order regulated kernel [4] 
that is analytic everywhere to avoid this difficultv. The third 
form is obtained from the second by twice integrating by 
parts. This reduces the singularity of the kernel to that of the 
Dirichlet case. It does, however, require basis functions that 
are differentiable. 

III. HIGH-ORDER METHODS 

FastScat uses patch-based basis functions for both the TM 
and TE polarization cases. That is to say the basis functions 
are nonzero only on individual patches. The patches are 
arbitrarily curved line segments parameterized by a function 
x(u).0 < u < 1. The basis functions are defined in terms of 
the surface parameterization according to 

/,.(«) 
v/2» + 1 

P„(2w-1) 

where P„ is the nth Legendre polynomial and 

9(v) 
Or 

Ou , du 

(17) 

(18) 

is the metric for the patch [5]. The normalization factors 
are chosen to make the basis functions orthonormal when 
integrated over a patch, i.e.. 

/. patch 
dl f„,(x)f„(x) 

(u)fn(u) = 6„ (19) 

The contribution to the overall solution error due to surface 
misrepresentation can be eliminated by internally representing 
the surface using its exact functional form [6]. Using the 
combination of high-order basis functions and an exact surface 
representation. FastScat can obtain a high-order approximation 
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to the smoothly varying source distribution  that is to be 
expected on a smooth scattering surface. 

By contrast, standard, low-order method of moments im- 
plementations use flat segments to approximate the surface 
geometry and basis functions that are constant (in the TM case) 
or piecewise linear (in the TE case) on a patch to approximate 
the sources. Representing a smoothly curved scatterer using 
flat segments is an example of surface representation error. 
Using flat segments further degrades the accuracy of the com- 
putation by introducing artificial edges, which cause spurious 
diffraction. Constant (or "pulse") basis functions are equivalent 
to the zeroth-order basis functions in FastScat: piecewise 
linear (or "rooftop") basis functions can be constructed from 
FastScafs zeroth-order and first-order basis functions. The 
advantage of having higher order polynomial basis functions 
is that they can provide accurate approximations to smooth 
functions more efficiently than pulse or rooftop basis functions 
alone can. 

The third numerical method that must be high order to 
achieve high-order convergence in the final result involves nu- 
merical evaluation of integrals such as those in (12) and (16). 
Gaussian quadrature is a well-known high-order method for 
evaluating integrals of nonsingular integrands. The impedance 
matrix elements of (12) and (16) fall into this category when 
the regions of integration of x and x' do not intersect. 
Such integrals may be evaluated efficiently with Gaussian 
quadrature and typically are. even in standard method of 
moments codes. The trouble begins when the regions of 
integration do intersect, as occurs when the patches involved 
touch or are the same. In such cases, standard Gaussian 
quadrature is reduced to the status of a low-order method 
[7]. [8]. So-called "singularity removal" (which is misnamed 
because, although it removes the infinity in the kernel at 
i = x'. it does not eliminate the singularity of the kernel at 
x = x' in the strict mathematical sense) is often called upon to 
handle such integrals, even though it does not actually restore 
the high-order behavior of Gaussian quadrature. 

Several schemes for high-order evaluation of singular inte- 
grands have been devised for and implemented in FastScat. 
One involves using quadrature rules that are specific to the 
singularity. For 2-D. where the singularity of the kernel is 
logarithmic, high-order "lin-log" rules [9] have been devel- 
oped. They are designed to exactly integrate products of 
polynomials and logarithms. An alternate approach that is 
more easily extended to the 3-D scattering case, involves 
tampering with the kernel to eliminate the singularity at x - 
x', but doing it in such a way that convolutions of the kernel 
with polynomial functions are still computed exactly [4]. The 
resulting function is regular (i.e., analytic)—hence, the name 
"regulated kernel". Convolutions of smooth functions with an 
appropriate regulated kernel may be evaluated in a high-order 
fashion by means of standard Gaussian quadrature. Both of 
these methods lead to similar results. The calculations reported 
in this paper were performed using a high-order regulated 
kernel and Gaussian quadrature. 

High-order methods have the potential to greatly improve 
the efficiency of obtaining accurate numerical results. How- 
ever, like a chain whose strength is limited by its weakest 

link, the convergence rate of an algorithm whose rinai result 
depends on several numerical methods, is limited b\ the 
convergence rate of its lowest order method. For scattering 
computations, this applies to the numerical methods used for 
surface representation, basis functions, and quadratures. To 
show how the method order of one of these components affects 
the rate of convergence of the full solution, it is best to var\ 
that one while setting the method order for each of the other 
two components high enough that they do not contribute an\ 
noticeable error. With FastScat. the user can control the order 
of each of these three numerical methods. 

The focus of this paper is on high-order basis functions and 
how they can be employed to efficient]) compute accurate 
results. Therefore, the calculations summarized here show the 
effect of varying the basis function order while using exact 
surface representations and quadrature orders high enough that 
numerical integration error was negligible. In normal usaee. 
one generally uses exact surfaces and sets the orders of the 
basis functions and the quadratures to be no higher than 
necessary to achieve the desired accuracy in the final result. 

IV. RESULTS 

Measuring the order of convergence of a numerical method 
requires observing how the error in the final result responds to 
changes in the discretization. For small enough discretization 
scales h. we expect the error to scale as e ~ /)" for an 
nth-order numerical method. 

In this next two sections, we present results of FastScat 
calculations on canonical 2-D geometries (a circle and an 
ellipse) that demonstrate how the rate of convergence varies 
with discretization scale size and basis function order. The 
third subsection is devoted to a large 2-D scattering geometry 
we call the "bat." The bat is prototypical of scatterers whose 
cross section has a large dynamic range as a function of ansle. 
For such scatterers. the utility of a high-order scattering code 
becomes evident even at "practical" accuracies. Sun SPARC 
10's were used for the circle calculations: the ellipse and bat 
calculations were performed on IBM RS/6000 computers. 

A. Circle 

The circle is one of the best geometries to use for investigat- 
ing the convergence properties of a scattering code because it 
has no geometrical singularities (e.g.. edges and corners) and 
the answer can be computed to arbitrary accuracy by summing 
the Mie series. This means that we can determine exactly and 
unambiguously what the errors are in our computed solutions, 
which eliminates one of the sources of disagreement about 
how to quantify solution accuracy. 

We used FastScat to compute the bistatic cross section 
of lA-radius circles for Dirichlet and Neumann boundary 
conditions, corresponding to TM and TE polarizations, re- 
spectively. The circles were divided into equal segments, 
each segment being represented internally as a circular arc. 
Quadrature orders were set high enough to guarantee that 
numerical integrations would be accurate to better than one 
part in 1012. 
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Fig. I.    Bistatic cross section of a l.\-radius circle for TM and TE polariza- 
tion (Mie series). 
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Fig. 2. Fractional difference between the cross section computed bv FastScat 
using pulse basis functions and the exact cross section (Fig. I) as a function of 
observation angle. The curves are labeled bv the number of identical segments 
into which the ]A-radius circle was divided. 

We performed a series of calculations with different basis 
function orders and different numbers of segments, and com- 
pared against the exact results (Fig. I). A sample of the results 
is shown in Fig. 2 for the case of zeroth-order basis functions 
and TM polarization. The error in the cross section varies as 
a function of bistatic scattering angle. It is evident, however, 
that, for 64 or more patches, increasing the number of patches 
by a factor of four reduces the overall error bv a factor of 
about 64. 

We can make a stronger quantitative statement about the 
discretization error if we condense the error versus angle 
information into a single number for each discretization. 
Of the many ways to do this, we have investigated three: 
maximum relative error, maximum error -^ average cross 
section, and root mean square (rms) error. For this particular 
problem, the result is essentially independent of which measure 
of error is chosen. Fig. 3 shows maximum relative error 
(inax[|RCS(fV)/RCSref(f7) - 1|]) versus density of unknowns 
plotted on a log-log scale for basis function orders zero. one. 
and two. and numbers of patches ranging from four to 4096. 
Consider the TM polarization case first. The most important 
feature to note is that, for enough unknowns, the data fit a 

10 100 

# Unknowns / Wavelength 

Fig. 3. Log-log plot of maximum relative error versus densitv of unknowns 
for the TM and TE polarization cases. Each set of points is labeled bv basis 
function order. 

linear trend line whose slope increases as the basis function 
order increases. Since the discretization scale h is inversely 
proportional to the number of unknowns A', this simply reflects 
the fact that the error diminishes as h'". where m increases 
with method order. In fact, the slopes of the lines connecting 
constant basis function points are close to integers—three 
for zeroth-order. five for first-order, and seven for second- 
order—indicating that the order of convergence of the cross 
section when using ?<th-order basis functions is m = 2v + 3. 

On the same plot, we also show an example of how the 
surface model affects the convergence rate. The dashed curve 
connects points that were computed by replacing the circular 
arc patches with flat patches. The order of the quadratures was 
the same as in the previous case. For this case, however, only 
one basis function order is shown, namely zero. The reason 
is that the poor surface representation so limits the rate of 
convergence that increasing the order of the basis functions has 
essentially no effect on the accuracy of the solution. Curves for 
higher basis function orders are virtual copies of the zeroth- 
order result, shifted to higher numbers of unknowns. In all 
such cases, the error in the cross section is consistent with h2 

scaling. 

In the TE case, the slopes of the lines connecting constant 
basis function points are close to one for zeroth order, three 
for first order, and five for second order, indicating that the 
order of convergence of the cross section when using re- 
order basis functions is x = 2n + 1. The dashed "curve 
connects points computed according to the standard method 
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Fig. 4. Semilog plot of maximum relative error versus density of unknowns 
for TM scattering from a lUA-radius circle. Points corresponding to different 
basis function orders for a fixed patch size are connected by lines and labeled 
b> the number of patches. 

of moments procedure for TE polarization, namely, by putting 
rooftop basis functions on a faceted approximation to the 
scatterer. It converges more rapidly than do the calculations 
that used zeroth-order (i.e.. pulse) basis functions with an 
exact geometry representation. This is not surprising given that 
currents modeled by rooftop basis functions are guaranteed to 
be continuous across patch boundaries, whereas those modeled 
by pulse basis functions are not. As in the TM case, however, 
using higher order basis functions, whether patch-based or 
edge-based, does not improve the order of convergence when 
a low-order geometry representation is used. It only increases 
the number of unknowns used to achieve a given accuracy. 
In all such cases, the error in the cross section is consistent 
with /;- scaling. 

Since memory usage is proportional to A'-, these plots 
also show how method order affects the relationship between 
accuracy and memory used. For errors less than about 10~4 

in the TM case and one in the TE case, not only are the 
errors in the cross sections lower when high-order methods are 
employed, but also the marginal cost of additional accuracy is 
lower. 

In the plots shown so far. curves connect data points 
corresponding to decreasing patch sizes at a constant method 
order. In finite element terminology this is known as "h- 
refinement." As we have seen, /(-refinement on a smooth 
scatterer results in geometric convergence in the cross sec- 
tion. Alternatively, one can take the same data and make 
a plot by connecting points of increasing method order for 
a fixed patch size. This is known as "p-refinement." The 
result of doing this for bistatic scattering from a 10A-radius 
circle and TM polarization is shown in Fig. 4. The curves 
tend toward straight lines, which, on a semilog plot, indi- 
cates exponential convergence. Exponential convergence in the 
computed cross section is characteristic of p-refinement on a 
smooth scatterer when high-order polynomial basis functions 
are used. 

Methods that achieve high-order convergence in general, 
and exponential convergence in particular, have obvious ad- 
vantages for efficiently computing accurate cross sections. 
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Fig. 5. Log-log plot of maximum relative error versus total computation 
time required to calculate the bistatic cross section of a 111A -radius circle 
with TM polarization. Points corresponding to different basis function orders 
and a fixed patching are connected by lines, which arc labeled b\ the number 
of equal arc length patches used. 

What may be less obvious is the fact that they facilitate 
accuracy estimation for computed solutions. For example, 
suppose we had not had an independent means (such as the 
Mie series for a circle) for computing a suitably accurate 
reference solution. We could still obtain an estimate of the 
accuracy of a given computed solution by comparing it to 
a reference solution generated by redoing the computation 
with an even finer discretization. To be useful, however, 
the reference solution must be significantly more accurate 
than the comparison solution. Obtaining a suitable reference 
solution using low-order methods may require doubling or 
quadrupling the number of patches, and hence the number 
of unknowns. The additional cost of such a calculation may 
be so high as to make it impractical. On the other hand, gen- 
erating the reference solution by increasing the basis function 
order can produce a significantly better answer with only a 
modest increase in the number of unknowns. The increase in 
required memory and computation time is likewise modest. In 
our opinion, the widespread reliance on low order methods 
is what accounts for the fact that it is virtually unheard 
of to see accuracy estimates accompanying computed cross 
sections. 

Another observation that may be made from Fig. 4 is that 
the way to achieve a high accuracy result using the least 
memory (i.e., fewest unknowns) is to make the patches large 
and put high-order basis functions on them. A look at run 
times instead of unknowns/memory usage leads to the same 
conclusion. Fig. 5 shows that for TM scattering from a 10A- 
radius circle, the total computation time required to achieve a 
given accuracy decreases as the number of patches decreases. 
A point of diminishing returns is reached at around 16 patches, 
at which point the arc length of each patch is about 4A. The 
optimum distribution of patch sizes for an arbitrary scatterer 
will depend on its geometry. The general rule of thumb 
that we follow for patching smooth scatterers is to make 
the patches about one wavelength long, except in regions 
where the geometry is strongly curved. In such regions, the 
patches should be some moderate fraction of the local radius 
of curvature. 
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Fig. 6. Monostatic cross seciion of a 20A x 2A ellipse (shown with 32 
patches] for TM polarization. 

B. Ellipse 

A good candidate geometry on which to apply this rule of 
thumb is the 20A x 2X ellipse. We can describe the ellipse by 
the parametric equations 

.r=ocosu (20a) 

!l=bs\nv (20b) 

where a = 10A and b - 1A. A sensible patching, which 
puts the highest density of patches in the most highly curved 
regions and vice versa for the flatter regions, is obtained if the 
patches cover equal increments in the parameter u. as indicated 
in the inset to Fig. 6. 

We used FastScat to compute the monostatic cross section 
in TM polarization of a 20A x 2A ellipse using several different 
combinations of basis function order and number of patches. In 
all cases, an exact surface representation was used to eliminate 
surface representation error, and the quadrature order was set 
high enough to guarantee that quadrature error would have 
an insignificant effect on the final accuracy. The reference 
solution was computed by putting tenth-order basis functions 
on an ellipse divided into 160 patches. Although we did not 
know the accuracy of the reference solution a priori, we have 
deduced from the convergence behavior of the comparison 
solutions that it is at least ten digits. A plot of the monostatic 
cross section versus angle for the reference solution is given 
in Fig. 6. 

Fig. 7 demonstrates that one can realize exponential conver- 
gence in the cross section by using high-order basis functions 
with a fixed patching. In the high-accuracy regime, memory 
usage is optimized by using large patches and high-order basis 
functions. In the low-accuracy regime, the accuracy is not that 
sensitive to the discretization for a given density of unknowns. 
The accuracy at which the various curves tend to bunch up is 
geometry dependent, but. as a general rule, can be expected 
to decrease as the problem size increases. 

The analog to Fig. 5 for the ellipse is Fig. 8. 

C. 300A Bat 

A bat is composed of straight faces connected smoothly by 
circular arcs of radius R. There are two long edges of length L 
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Fig. 7. Semilog plol of maximum relative error versus densitv 
for TM scattering from a 2tl,\ x 2A ellipse. Points correspondm 
basis function orders for a fixed patch size are connected b\ line 
by the number of patches. 
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TM polarization. Points corresponding to different basis function orders and 
a fixed patching are connected by lines, which are labeled by the number of 
patches used. 
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Fig. 9.    "Bat" geometry. 

and six short edges, each of length L/3. at right angles to each 
other. The surfaces of the corresponding 3-D bat are assumed 
to be perfect conductors. It is interesting from a practical 
point of view because it has three high cross section specular 
reflection regions (one of which is the 2-D analog of a corner 
cube) and a low cross section everywhere else (see Fig. 9). 
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The results shown here are for R = 1A.Z = 300A. Fig. 10 
shows two computations of the monostatic cross section"as a 
function of incidence angle for Dirichlet boundary conditions 
(i.e.. TM polarization). One computation was performed usins 
low-order basis functions, the other used high-order basis func"- 
tions. Both calculations used an exact surface representation, 
quadratures good to at least eight digits of accuracy, and 
exactly 6000 unknowns to represent the sources. In the former 
case, the surface was broken up into 6000 segments, each 
about i\ long, and the sources were represented bv pulse basis 
functions (i.e.. one unknown per segment). This constitutes the 
standard, low-order procedure (except for the exact surface 
representation used on the circular arcs) for solvins a 2-D 
scattering problem with TM polarization. In the latter case, the 
surface was divided into 1200 patches, each about 1A Ion«, and 
basis functions up to fourth-order were employed to represent 
the sources (i.e.. five unknowns per segment). 

The two plots are very similar over a good portion of the 
angular range, particularly in regions of high cross section. 
There are narrow peaks at 45 and 135° as expected and a 
broader peak centered at 180°. resulting from the "comer 
square" effect. Note that the oscillations evident in the cross 
section are the result of interference, not due to any solution 
error. However, in the angular ranges from 0 to 30c and 60 
to 120°. there are significant disagreements. The "spikes" in 
the upper plot Fig. 10 are suspicious looking. Which is rieht'' 
How can one be sure? 

Having high-order methods at one's disposal makes it 
possible to answer these questions with the kind of certainty 
that is impractical to attain with low-order methods. If we 
keep the same patching of the bat, but allow up to fifth-order 
basis functions instead, the number of unknowns increases to 
7200. This corresponds to a 44% increase in the amount of 
memory required to store the impedance matrix and a 73% 
increase in the amount of CPU time required to LU decompose 

the impedance matrix (which is the most time-consumin« step 
in the solution process). More importantly, allowine for one 
higher polynomial order to represent the sources improves the 
accuracy of the solution significantly. So much so that we are 
justified in using the fifth-order solution as a reference solution 
against which we can compare the lower-order solutions in 
order to estimate their accuracies. To compute a reference 
solution of comparable accuracy by the standard, low-order 
technique would require subdividing the 6000 patches many 
times into smaller patches. The number of unknowns would 
increase significantly. In principle, it could be done, but since 
CPU time for LU decomposition and memory for impedance 
matrix storage scale so badly with number of unknowns 
the cost would be so exorbitant as to make the procedure 
impractical. 

Fig. 11 shows plots of the differences between the fifth- 
order reference solution and the two solutions plotted in 
Fig. 10. It is evident that the fourth-order solution is the better 
of the two. As expected, the error is least where the cross 
section is highest. The estimated error of the fourth-order 
solution is generally below 10"3A: at a few angles it rises 
to almost 10 2A. If error bars were to be plotted on the hi<>h- 
order data of Fig. 10. they would all be less than the thickness 
of the plotted line. Fig. 11 also shows the estimated error 
of the low-order solution to be generally higher. Whereas it 
is probably acceptable over angular regions "where the cross 
section is high, in the low cross section region the error cannot 
be considered acceptable, exceeding, as it does, 20 dB for 
certain angles. Similar results obtain for TE polarization. 

V. SUMMARY 

The unfavorable tradeoff between cost and problem size for 
method of moments solutions to scattering problems is well 
known and several so-called "fast" methods, such as the fast 
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multipole method [10]. have been devised in recent years to 
address it. 

The subject of this paper is another tradeoff that, while no 
less important, is apparently much less widely appreciated. It 
is the tradeoff between cost and accuracy for a fixed problem 
size. Improving the accuracy of a computed solution requires 
refining the discretization, which in turn requires more memory 
and more computation time. With low-order methods the 
amount of additional computer memory and time required to 
achieve a more accurate result may be substantial. High-order 
methods are designed to make accuracy improvements much 
less costly. 

The focus in this paper has been on using high-order basis 
functions to compute cross sections in 2-D. High-order basis 
functions are pan of the triad of high-order methods that 
make FastScat a high-order scattering code. The results show 
that by using high-order methods it is possible to achieve 
very accurate solutions to simple scattering problems on a 
workstation in a reasonable amount of time. Furthermore, we 
have demonstrated that the solution converges at a geometric 
rate as a function of patch size for fixed basis function order 
and exponentially as a function of basis function order for 
fixed patch size. For high accuracies, the most computationally 
efficient solutions, in terms of both memory and CPU time, 
are produced by using high-order basis functions on larce 
patches. 

High-order methods are important for doing large problems 
as well. In fact, the adverse effects of a low-order discretization 
are likely to manifest themselves even more prominently as 
problems grow in size. The error caused by a low-order 
discretization will be particularly noticeable on scatterers 
whose cross section has a large dynamic range as a function 
of angle. We devised a large 2-D scatterer called the bat 
in order to demonstrate this effect. We observed that where 
the cross section is high, solutions computed using low-order 

and high-order basis functions were about the same, whereas 
in the more interesting regions where the cross section is 
low. the high-order solution is accurate while the low-order 
solution has significant errors. Had we used a low-order 
surface representation the result would likely have been worse 
still. The bat also demonstrated the practical utility of hich- 
order methods for estimating the accuracy of a computed 
solution. 
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We show how to solve time-harmonic scattering problems by means of a high- 
order Nyström discretization of the boundary integral equations of wave scattering 
in 2D and 3D. The novel aspect of our new method is its use of local corrections to 
the discretized kernel in the vicinity of the kernel singularity. Enhanced by local cor- 
rections, the new algorithm has the simplicity and speed advantages of the traditional 
Nyström method, but also enjoys the advantages of high-order convergence for con- 
trolling solution error. We explain the practical details of implementing a scattering 
code based on a high-order Nyström discretization and demonstrate by nume.-ical 
example that a scattering code based on this algorithm can achieve high-order con- 
vergence to the correct answer. We also demonstrate its performance advantages over 
a high-order Galerkin code,     e i<ws Academic Press 

Key Words: high-order numerical method: Nyström method; boundary integral 
equation: Nyström discretization; local corrections: acoustic scattering: electromag- 
netic scatterina. 

I. INTRODUCTION 

High-order methods are numerical methods characterized by their ability to obtain extra 

digits of precision with comparatively small additional effort. Scattering codes that employ 

high-order methods have a distinct advantage over scattering codes that use low-order meth- 

ods when it comes to computing results accurately. We demonstrated this advantage with 

a Galerkin method of moments scattering code called FastScat™ [1, 2], which employs 

1 This research was supponed by the Defense Advanced Research Projects Agency of the U.S. Department of 

Defense under Contract MDA972-95-C-0021 and by the Hughes Electronics Corporation. 

627 

0021-9991/98 S25.O0 
Copyright © 1998 by Academic Press 

All rights of reproduction in any form reserved. 



628 CANINO ET AL. 

high-order methods in its geometry description, current basis functions, and quadratures. In 
terms of memory efficiency, the advantage of using a high-order code such as FastScat was 
clear. For a given number of unknowns, results obtained with FastScat were generally more 
accurate than those obtainable by low-order codes, with the accuracy gap widening rapidly 
as the number of unknowns applied to the problem was increased. In terms of CPU time effi- 
ciency, however, the advantage of using a high-order code such as FastScat was not so clear. 
The precomputation phase of the calculation often accounted for an undesirably large frac- 
tion of the total solution time. Although we were able to significantly accelerate the part of the 
precomputation phase devoted to computing near-interaction matrix elements bv using high- 
order regulated kernels [3]. the overall matrix fill procedure was still considered too slow. 

The precomputation phase of a Galerkin scattering calculation is time consuming because 
it requires numerical evaluation of the convolution of the kernel with basis functions on even 
pair of source and field patches. This amounts to A:2 numerical double integrations over 
patches, where A' is the number of unknowns. By contrast, when a point-based (Nyström) 
discretization is used, the impedance matrix fill step consists of nothing more than a kernel 
evaluation to fill most matrix elements and O(N) single integrations and some low-rank 
linear algebra to fill the others (specifically, the near interactions). As a result, use of a 
point-based discretization dramatically reduces precomputation time. 

Despite its simplicity and speed advantages, the Nyström method has not been widely 
used for discretizing the integral equations that arise in 2D and 3D scattering problems. 
In fact, we know of only a few reported instances, of which [4. 5] are examples. The 
problem is that the conventional Nyström method [6] is designed to handle regular kernels, 
whereas the Helmholtz kernel for wave scattering is singular wherever the source point 
coincides with the field point. The standard way [6] to try to overcome this problem is to 
use so-called "singularity extraction." which, in practice, removes the infinity in the kernel 
but not the singularities in the kernel's derivatives. While singularity extraction avoids the 
dilemma caused by numerical evaluation of the kernel at infinities, it does not generalize 
easily to arbitrary surface patch geometries and it is a low-order method. In this paper, we 
introduce "local corrections" as a means to overcome the problems associated with kernel 
singularities. This enhanced Nyström discretization method has all the advantages of the 
standard Nyström method combined with the high-order convergence capability required 
to achieve error control. 

This paper provides a detailed explanation for using the Nyström method to solve scat- 
tering problems in the 2D and 3D scalar cases and the 3D vector case (by which we mean 
electromagnetic scattering based on the Maxwell equations), as well as numerical evidence, 
demonstrating the method"s utility. The first section reviews the traditional Nyström method 
for discretizing integral equations and explains how it can be adapted to handle singular 
kernels by incorporating local corrections. The second section discusses practical aspects of 
implementing a high-order Nyström code, such as appropriate surface models and meshes, 
choice of testing functions for computing local corrections, and how to compute scattering 
results. In the fourth section, we show numerical results for some 2D and 3D canonical 
scatterers to demonstrate that our implementation of the Nyström method achieves high- 
order convergence to the correct answer. We also demonstrate the run-time performance 
benefits of a using high-order Nyström code, compared to high- and low-order Galerkin 
codes, in this section. Finally, the Appendix describes how the local correction integrals for 
2D scalar. 3D scalar, and 3D electromagnetic scattering can be formulated for efficient and 
accurate numerical evaluation. 
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II. NYSTRÖM METHOD 

A. Conventional Nyström Method 

The conventional Nyström method is a simple and efficient mechanism for discretization 
of integral equations with nonsingular kernels. Consider the integral equation 

<p(\) =  / ds'G(x-x')f(x) (1) 

and a quadrature rule for integrating a function /(x) over the region S 

/ dsf(x) = ]T»„/(x„). (2) 

Such a quadrature rule will be provided by Gauss-Legendre or Gauss-Jacobi rules on a 
parameterization of S, so that the weights a>„ will be the products of the elementary weights 
w„ with the Jacobian of the parameterization: 

u>„ = ^/g(un)w„. (3) 

x„ = X(H„). (4) 

where u„ are the abscissae of the elementary rule. x(u) is the mapping function of the 
surface 5. and g(u) is the determinant of the mapping metric. The extension to patched 
parameterizations is straightforward. 

The Nyström discretization of a function on S is' simply the tabulation of the function at 
the quadrature points x„: 

\j/n = ir(x„). (5) 

To discretize integral Eq. (1), we simply form a matrix from the kernel: 

A' 

<p„, = ^ w„ G (x„, - x„) \j/„. (6) 
n=\ 

This discretization has an error of the same order as the underlying quadrature rule [7]. 
In other words, if the surface S is smooth, 4> and G(x-x') are regular functions, and if 
a high-order quadrature rule is used, then the solution to Eq. (6) represents a high-order 
approximation to the exact solution. 

Unfortunately, the kernels G(x-x') for wave scattering are not regular. Instead, they 
have singularities (or even hypersingularities) at short distances. With such kernels it is 
often not even possible to make a matrix out of the kernel because its value is undefined 
when x = x'. Even if the kernel were finite at vanishing separation, a kernel singular in its 
higher derivatives would spoil the high-order properties of the above prescription. 

B. High-Order Nyström Method for Singular Kernels 

We have adapted the Nyström method to handle singular kernels, without sacrificing high- 
order convergence, by incorporating Strain's method [8] for obtaining high-order quadrature 
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rules for singular functions. The essence of the method is that by computing convolutions 
of the kernel with a suitable set of testing functions, it is possible to determine how to adjust 
the quadrature rule so that it is just as accurate near the singularity as far from it. The beauty 
of the method is that these quadrature rule modifications are required onlv in the vicinity 
of the singularity, hence the name local corrections. 

Conceptually, local corrections may be viewed as adjustments to the quadrature weichts 
(at the original set of sample points) that are required to make the quadrature rule high-order 
accurate when the (singular) function G(x-x') is included in the integrand. In practice, 
since quadrature weights and discretized kernel terms always enter into the quadrature rule 
as product pairs, one can equally well "locally correct" the discretized representation of 
kernel and keep the original quadrature weights. This is the preferred approach because the 
modified representation of the kernel has no infinities. We can write the "corrected" matrix 
representation of the kernel as 

f.     _ \ L„w. when x„ e Dm. 
U">" =   1  n - u        ■ (7) I G(x„, - x„).   otherwise. 

where £.„,„ is a (sparse) matrix of local corrections whose entries are nonzero only for source 
points x„ within a small domain D„, centered on the field point x,„. For |x„, - x'| sufficiently 
large (i.e.. outside the local correction domain D,„). G(\„, -x) is a smoothly varying 
function of position and the underlying quadrature rule provides a high-order approximation 
to the desired integral. Close to the singularity, on the other hand, the singular nature of 
the kernel spoils the high-order behavior of the underlying quadrature rule, and it becomes 
necessary to use locally corrected values for the kernel instead of G(x„, - x„) in order to 
achieve high-order convergence. The mechanism for computing the local corrections for 
a given set of source points is explained below. The size of the local correction domain is 
discussed in Section III.D. 

The underlying quadrature rule is exact for integration of a certain class of functions 
(typically polynomials). We choose the local corrections to make convolution of the singular 
kernel with the same class of functions exact. They are obtained by solving the linear system 

Y^oj„Lmnf
[k)(xm - x„) =   /   ds'G(x„, - \')f 

■ID,, 

lA,(x„,-x'). (8) 
D„ 

which represents K constraints (one for each testing function /•*"') on J local correction 
coefficients (one for each of./ source points in the vicinity of the wth field point). The 
integral over D,„ can be obtained by oversampling the region of integration until the result 
has converged to the desired accuracy. The nonzero components of the wth row of the local 
correction matrix are obtained by inverting the (small) system of equations above, either by 
factorization (via LU decomposition) if./ = K or by singular value decomposition (SVD) if 
./ # K. Computing local corrections is the most time consuming step of the precomputation 
phase. Fortunately, it needs to be done only once at every sample point. 

C. High-Order Nyström Method Advantages 

There are several reasons for using the Nyström method to achieve a high-order dis- 
cretization: 
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• Faster prevomputation. unlike the Galerkin method, which requires A'2 numerical 
double integrations to fill the impedance matrix, the Nyström method requires less than i\'2 

kernel evaluations and O(N) calculations of local correction coefficients (each of which 
involves a small number of adaptive integrations and a low-rank matrix inversion). An addi- 
tional acceleration is possible when multiple solutions are desired at different frequencies. 
This comes about because a frequency-dependent Helmholtz kernel can be written as the 
product of a smoothly varying, frequency-dependent function and a frequency-independent 
Laplace kernel. Once the local corrections for the Laplace kernel have been computed, they 
can be used with minor modification at any frequency. 

• Elimination of multipatch. parametric basis functions. Conventional method of mo- 
ments scattering codes require basis functions with a certain level of continuity (in the 
surface parameterization) across patch boundaries to facilitate differentiation. For example. 
an important property of the popular RWG [9] basis functions for electromagnetic scat- 
tering is that their normal components are continuous across patch boundaries. One can 
also use high-order extensions to the RWG basis functions [10]. although we have found 
that implementing these basis functions in a scattering code can be both complicated and 
inconvenient, especially for arbitrary, curved surfaces. Fortunately, for high-order codes 
the requirement to use elemental sources with guaranteed continuity between patches dis- 
appears because continuity of the source distribution is achieved as a natural consequence 
of accurately solving the integral equation. (The reason this is so has to do with the fact 
that the error caused by not enforcing continuity of the elemental sources is comparable 
to the error of the underlying discretization. With a low-order discretization (e.g.. RWG 
basis functions on flat patches), continuity enforcement has a significant payoff because 
the error in the underlying discretization is also significant. With a high-order discretiza- 
tion, where the error due to the underlying discretization can more easily be made in- 
significant, the situation is reversed. Thus, for h'igh-order codes, whether Galerkin or 
Nyström. the benefits of enforcing source continuity between patches do not outweigh the 
inconveniences.) 

• More amenable to fast solution algorithms. Implementation of a fast method that 
requires segregation of the discretized scatterer into groups (such as the fast multipole 
method (FMM) [11] or adaptive integral method (AIM) [12]) is simpler and more natural 
with a point-based discretization. When a Galerkin implementation with overlapping basis 
function domains is employed, the fast algorithm is either more complicated (because multi- 
patch basis functions must be split apart) or less efficient (because the groups are larger). 
A Galerkin implementation that uses high-order basis functions (even those confined to 
single patches) cannot achieve optimum efficiency from the FMM because high-order basis 
functions are used to their greatest advantage on patches larger than a wavelength, whereas 
optimum use of the FMM favors groups smaller than a wavelength. In a Nyström discretiza- 
tion, the groups consist of individual sample points on the surface, so no such grouping 
restrictions apply. 

• Iterative solver memory reduction. With the Nyström method, the memory requirement 
for an iterative solver using the full impedance matrix can be reduced from 0(N2) (storing 
the full impedance matrix) to O(N) (storing only the sparse local correction matrix). This 
is practical because reconstruction of the unsaved portions of the impedance matrix only 
requires evaluations of the kernel, which are fast. If the FMM is used to represent the far 
interactions, the storage requirement goes from Ö(N5/4) in the single-stage case [13] to 
0(N log(AO) in the multilevel case [14]. 
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• Symmetry exploitation. When basis functions are used, it is more complicated to re- 
flect geometrical symmetries in the matrix representation. It may be necessary to explicitly 
consider basis function transformation properties and to provide special treatment for some 
variables (e.g.. the coefficients of basis functions whose domains intersect reflection planes). 
In the Nyström case, the representation of symmetries is much simpler. 

III. PRACTICAL CONSIDERATIONS 

A. Surface Description 

Without a high-order surface description, a high-order Nyström discretization is of little 
benefit. For example, representing a curved surface by means of fiat facets limits the rate of 
solution convergence to low order whether or not the rest of the discretization method is high 
order. Ideally, the internal representation of the surface exactly matches the physical surface. 
Such a representation is possible for idealized curved shapes such as circles, ellipses, ocives. 
etc. in 2D. and spheres, ellipsoids, etc. in 3D. For curved objects of more practical interest, 
a high-order description of the physical surface may be given by high-order parametric 
representations such as bicubic splines or NURBS (nonuniform rational B-splines). As 
these are often the representations used by a CAD program to describe the object as it is 
being designed and built, it is appropriate that we should also use them for electromagnetic 
or acoustic modelling purposes. 

Use of a high-order surface description is distinguished from that of a faceted description 
in that the subdivision of the surface into patches is typically done once and refining the 
discretization to improve accuracy is accomplished by increasing the order of the quadrature 
rule (which increases the number of sample points per patch). 

B. Meshing 

The essence of a point-based discretization is the tabulation of functions at a set of points 
lying on the surface. This need not have anything to do with subdividing a surface into 
patches. Indeed, in the 2D case, patches can be done away with entirely on closed surfaces 
(i.e., closed curves) parameterized by arc length, because the trapezoidal rule is a high- 
order quadrature rule for periodic functions. In 3D. however, global parameterizations with 
natural, high-order quadrature rules are much harder to come by. so subdivision of a surface 
into patches, each of which comes with its own high-order quadrature rule, becomes a 
practical necessity. 

Since patches are introduced solely for the purpose of providing ready-made, high-order 
quadrature rules on the surface, the job of meshing a surface is simpler and less restrictive. 
Specifically, whereas a mesh designed for use with RWG-type basis functions is not allowed 
to have a vertex in the middle of an edge, there is no such restriction on a mesh designed 
for a point-based discretization. The only practical restrictions are that the mesh cover the 
surface and that the patches not be so distorted or curved that the supposedly high-order 
quadrature rules are not actually high order. 

C. Testing Functions 

The choice of testing functions goes together with the choice of quadrature rule. If the 
quadrature rule is designed to efficiently integrate regular functions, the testing functions 
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should be regular functions of increasing order. In locations where singular behavior of the 
source function is expected, such as near geometric singularities (e.g.. edges and corners), 
it may be desirable to apply a different quadrature rule and use appropriately singular 
testing functions [15]. For purposes of this discussion, we will assume the scattering surface 
and the sources are smooth functions of position. Any departures from regularity can be 
accommodated reasonably efficiently by tapering the size of the patches in the direction of 
the singularity. 

Testing functions may be global or local. Examples of global testing functions are mono- 
mials in the surface parameter u in the 2D case, and powers of .v. y. and z in the 3D case. The 
advantage of using global testing functions to compute local corrections on smooth surfaces 
is that such testing functions are manifestly continuous across patch boundaries, just like 
the sources. Sometimes enforcing continuity is a mistake, however, such as when the field 
point and source patch are near each other but on separate, unconnected surfaces. Global 
testing functions can also perform badly near geometric singularities such as a right-angle 
bend. Local testing functions (i.e.. testing functions confined to individual patches) do not 
take full advantage of the guaranteed continuity of the sources on touching patches but are 
the preferred choice because they are simpler to implement and more robust. 

With local testing functions, the local corrections for a given field point can be computed 
on a patch by patch basis. Thus, the number of points whose quadrature weights are being 
corrected always equals the number of sample points on the patch. Doing this has the side 
benefit of keeping down the size of the local correction linear systems that must be solved 
when it becomes necessary to compute local corrections for points on several patches. 

The number of local testing functions to use is still a free parameter. In 2D. where use of 
a Gauss-Legendre rule of order M allows exact integration of polynomials up to order 2M 
(i.e.. degree 2M - 1), it makes sense to use as many testing functions as there are points to 
locally correct. In effect, the singular kernel and the unknown source function are both being 
approximated to order M, which means the order of approximation for the product is 2A/. 
This results in an exactly determined system of equations for computing local corrections. 

In 3D. if a Gauss-Legendre product rule of order MxMy is used on quadrilateral patches, 
the natural number of local testing functions to use is AMxMy. This leads to an exactly 
determined system. If the patches are triangles, one can use the quadrature rules of Lyness 
and Jespersen [16] and their higher-order extensions. For these triangle rules, a natural 
correspondence between the number of sample points and the maximum testing function 
degree is less obvious. When the number of sample points and the number of testing 
functions are not the same, they can at least be made close, in which case the nonsquare linear 
system of equations for the local corrections can be solved by computing a pseudoinverse 
using SVD. In our experience, local correction systems that are square or nearly square 
perform best. 

C.l. Two-dimensional scalar testing functions. Monomials of increasing degree in the 
parameterization, i.e.. f<k){u) = uk. are the simplest testing functions, but they can also be 
troublesome when using high-orderrules because they produce linear systems for computing 
local corrections whose condition number grows exponentially with degree. The alternative 
we favor is orthogonal polynomials such as Legendre or Lagrange polynomials. With either 
of these polynomials as testing functions, it takes a little longer to compute the integral on 
the right-hand side of Eq. (8). but the linear system is well conditioned for all polynomial 
degrees. In addition, if the number of testing functions K equals the number of source 
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points whose quadrature weights are being corrected ./. then the system is orthogonal and 
the matrix consisting of the K testing functions evaluated at the ./ different source points 
can be inverted simply by transposition. 

C.2. Three-dimensional scalar testing functions. The trade-off between the simplicity 
of monomials and the better conditioning behavior associated with orthogonal polynomials 
exists also in the 3D cases. In 3D. however, our experience have been confined to testing 
functions of a low enough degree that use of monomial functions generally does not pose 
any serious trouble. On triangular patches, we use testing functions of the form 

/"'<u) = (z/Tor)". (9) 

where u] and ir are the parameters of the surface description and the exponents obey 
0 < /?;. n < M and 0 < m + n < M for some maximum testing function degree M. 

CJ. Three-dimensional vector testing functions. In this case, vector testing functions 
locally tangent to the surface are required: continuity of the testing functions between 
adjacent patches is not. A natural set of basis vectors is given by the derivatives of the 
surface with respect to the two surface parameters;/' and ir. We use testing functions of 
the form 

,(, 9,-x(u)   ,,. 
ti,(u) = -^=/,A,(u). (10) 

where v = 1. 2 and the scalar functions /a'(u) are the same as those used in the 3D scalar 
case. This form for the testing functions has the property that the surface divergence of 

since dvx(u)/Jg(u) is divergenceless (see Appendix C). This form for the divergence of 
t^'(u) (which enters into the computation of local corrections for the hypersingular kernel) 
has the especially desirable property that it avoids the need to compute second or higher 
order derivatives of the surface. 

D. Extent of Local Correction Domain 

When local testing functions are used, the region over which local corrections should be 
computed always includes the patch containing the field point, and it extends out to include 
other patches until the underlying quadrature rule is accurate enough to replicate the exact 
answer to within a desired tolerance. Since the testing functions have local support, the 
problem of computing local corrections for a region containing several patches decouples 
naturally into several smaller local correction problems, one for each patch. The tolerance 
should be based on an estimate of the optimum accuracy that the particular discretization 
could achieve; there is, after all. little to be gained by trying to evaluate the impedance 
matrix more accurately than what is warranted by the discretization. The integrals on the 
right-hand side of Eq. (8) can be computed by adaptive integration to comparable accuracy. 
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E. Local Corrections for "Regular" Parts of the Kernel 

In principle, it is unnecessary to compute local corrections for regular components of 
the kernel because they will be efficiently integrated by a quadrature rule of sufficiently 
high order. If such components are strongly peaked, however, the required order may be 
so high that it is computationally more efficient to treat them as if they were singular 
and compute local corrections for them. For example, the scalar kernel n • V'G(x. x) in 
2D or 3D is a strongly peaked function of x' when the field point x is close to. but not 
on. the source patch. This situation arises in the analysis of scattering from thin lavers. for 
example. One way to handle this problem is to put a fine discretization on each laver. in effect 
subdividing the strongly peaked kernel function into small parts, each of which is relatively 
smooth. This procedure is inefficient, however, because it uses many more sample points 
than are warranted by the expected spatial structure of the source. A better approach would 
be to discretize each layer densely enough to adequately represent the sources and compute 
local corrections for the strongly peaked kernel. Computing such local corrections can be 
a nontrivial task by itself, but one might expect that the extra time spent in precomputation 
would be compensated by a less time-consuming solution phase. 

F. Using the Results 

F.l. Computing scattered fields. The amplitude of a scattered wave can be computed 
by convolving the scattered wave with the source distribution. Even though a Nyström 
discretization specifies the source only at a finite set of points, these points are ideally 
suited for evaluating integrals in a high-order fashion by virtue of Eq. (2). For example, the 
amplitude F(k) for 3D scalar scattering of a source distribution ^(x) on a surface S with 
Neumann boundary conditions (i.e.. n • V^(x) = 0 for x on S) into the plane wave given 
bv <b{\) =ze'kx is 

F(k) = — <b ds(n- V</>*(x))^(x) (12) 

= 4^2^w<-(n(x<-)- V(P (x,))V(x,). (13) 

where the sum is over all quadrature points and * indicates complex conjugation. The 
extensions to other forms of scattering, whether near- or far-field, are straightforward. 

F.2. Source interpolation. When a scattering problem is solved using a Galerkin scat- 
tering code, it is obvious how to compute the value of the source distribution at any point 
on the surface because the solved-for coefficients multiply basis functions that are uniquely 
defined at every point on the surface. The Nyström discretization, on the other hand, returns 
values of the sources only at a finite set of discrete sample points, so that determining the 
value of the source distribution at a point that is not part of this set requires interpolation. 

When the scattering computation is performed using a second kind integral formulation, 
one can use the original Nyström interpolation formula, augmented by local corrections, to 
interpolate the source distribution. As an example, if the magnetic field integral equation 
(MFIE) is used to solve for the electric current distribution J(x) induced on a perfectly 
electrically conducting (PEC) scatterer by an incident magnetic field Hinc(x), one can write 
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the current at any point x on the surface S as[17] 

J(x) = 2n(x) x H""(x)- * (/J'V'CIX.X'1 x J(x') (14) 

We obtain an interpolation formula from this continuous equation by using Eq. (2) to 
approximate the integral, i.e.. 

J(x) = 2n(x) H""(x)-]Tw,V'G(x.x,) x J(x,l (15) 

where the sum over / extends over all sample points on S. Of course, to make this a high-order 
interpolation formula, it may be necessary to compute local corrections to the quadrature 
rule at source points in the vicinity of the field point x. 

Another interpolating function, which does not require computing new local corrections 
and is usable with first or second kind integral formulations, takes the form of a linear 
combination of the functions that are integrated exactly by the underlying quadrature rule. 
The coefficients may be determined by convolving the source with the projection operator 

I(x.x') = ^/,„(x)(A'   ')m„./"H(x'). (16) 

where the summation extends over all functions /, (x) for which the quadrature rule is exact, 
and N is a normalization matrix whose components are given by 

A„,„ =   / dsfm(x)f„(x). (17) 

If the /,(x)'s are orthonormal over 5. then A' is simply the identity matrix. Convolution 
with I(x. x') eliminates the part of a function that is orthogonal to all the f,(\)'s. If we 
evaluate the convolution of I (x. x') with the source function by means of the underlying 
quadrature rule, we arrive at the following source interpolation function s(x), which only 
requires knowledge of the source at the discrete set of sample points .v(x,•): 

s(x) = ^/m(x)(A   ')„„, ]Ta>,7„(x,').?(x;-). (18) 

The summation over / in the above equation extends over all sample points. 

IV. RESULTS 

This section is composed of two parts. The objective of the first part is to show that our 
most recent version of FastScat. which uses a Nyström discretization, achieves high-order 
convergence to the correct answer for a few small, benchmark problems from 2D scalar and 
3D vector scattering. In the second part, we benchmark the performance of this code against 
two Galerkin codes, comparing them on the basis of CPU time and solution accuracy. 
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A. Validation 

The most common practice seen in the literature for demonstrating the validity of a scat- 
tering code is to show that the results obtained from the code with a particular discretization 
compare favorably to a reference solution obtained from a series solution, another scattering 
code, or measurements. Individual results such as this, while useful and necessary, sav noth- 
ing about the convergence properties of the algorithm on which the code is based. To show 
how an algorithm converges, one must compute results with a sequence of increasingly fine 
discretizations and observe whether and how the results converge to the correct answer. 

This is especially important when validating a (purportedly) high-order code. One cannot 
expect to enjoy the benefits of a high-order code (more accurate solutions, solution error 
control, etc.) on large scattering problems without first verifying that the code achieves hiah- 
order convergence on small scattering problems (where it is easier to generate solutions with 
very small errors). The order of convergence of a numerical method relates to the rate at 
which the error in the computed solution decreases as the discretization scale decreases. 
For small enough discretization scales /?, the error in the solution computed by a /nh-order 
method scales as hp. The results presented in this section will be shown to follow this 
scaling law. 

The benchmark problems include a circle and an ellipse in 2D. and a sphere and an 
ellipsoid in 3D. In the 2D scalar scattering cases, results for both Dirichlet and Neumann 
boundary conditions on the surface will be presented; in the 3D vector (electromagnetic) 
scattering cases, it will be assumed that the surfaces are perfect conductors. The surface 
boundary conditions are chosen mainly for simplicity; similar convergence behavior has 
been shown for other types of boundary conditions (such as impedance boundary conditions 
and dielectric interfaces) as well. 

A.l. Two-dimensional scalar. We solved four different integral equations to obtain 2D 
scalar scattering results. For Dirichlet boundary conditions (which correspond to the TM 
polarization case of electromagnetic scattering from an object with cylindrical symmetry) 
the first-kind integral equation is 

0mc(x) = - & dl'G(x, x')cr(x'). (19) 

and the second-kind equation is 

-n • V0inc(x) = -CT(X)+ <j> dl'(n ■ V'G(X,X'))CT(X'). (20). 

In these equations 0inc(x) is the incident scalar field, G(\. x') is the 2D scalar kernel, and 
n and n' are the unit normals to the contour C at the field and source points, respectively. 
For this polarization case, the 2D scalar source a is proportional to the z component of 
the electric current J in the corresponding 3D vector problem, assuming z is the axis of 
translational symmetry. 

For Neumann boundary conditions (which correspond to the TE polarization case of 
electromagnetic scattering) the first-kind integral equation is 

n • V0inc(x) = I dl'iii ■ V)(n' • V'G(x. x')) i/r(x') (21) 
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and the second-kind equation is 

x) = -f{\) - i dl'in ■ V'Gix. x'))i//(.\'). (22) 

For this polarization case, the electric current J in the corresponding 3D vector problem, 
assuming z is the axis of translational symmetry, is related to the 2D scalar source \lr bv 

J = \!/i\ x z. (23) 

A combined field equation can be obtained in either case by adding the first and second 
kind equations together using an appropriate combination coefficient [18]. Although no 
combined field equation results are reported here, it should be noted that use of a combined 
field formulation is often recommended because, by being insensitive to internal resonances, 
it can improve the condition number of the impedance matrix. 

A.l.a. 1 '/.-radius circle. A circle is the ideal problem for benchmarking a high-order 
scattering code because its surface is smooth and easy to define exactly, and its cross 
section can be determined, for purposes of comparison, to arbitrary accuracy usine the Mie 
series [19]. We used FastScat to compute the bistatic cross section of a 1 Ä-radius circle 
whose surface obeys either Dirichlet or Neumann boundary conditions, which correspond 
to TM and TE polarizations, respectively. Meshing the circle consisted of dividing it into 
circular segments of equal arc length. Nyström sample points were distributed on each 
patch (parameterized by arc length) according to a Gauss-Legendre integration rule of a 
given order and Legendre polynomial testing functions up to half this order were used for 
computing local corrections. The resultant local correction linear systems are square. 

We performed a series of calculations with different discretizations (i.e.. different numbers 
of patches and different Nyström quadrature orders) and compared the results to the Mie 
series results (shown in Fig. 1). For a given Nyström quadrature order (which we henceforth 
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FIG. 1.    Bistatic cross section of a I Ä-radius circle for TM and TE polarizations computed by the Mie series 
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FIG. 2.    Log-log plot of maximum relative error vs unknown density for 1 /.-radius circle and TM polarization. 
Each set of points is labeled by Nyström order. 

abbreviate to Nyström order), as the size of the patches decreases, the difference between 

the exact result and the FastScat calculation also decreases. 

A more quantitative measure of convergence behavior is given in Fig. 2. where we have 

plotted maximum relative error (defined as max[|o-(0)/t7ref(0) - 11], where a(9) and aK{(0) 

are the calculated and exact cross sections, respectively, for 6? = 0 to 180: in 1 - increments) 

versus the density of unknowns for a first-kind integral formulation of the TM polarization 

case. The number of patches spanning the circle ranged from 4 to 2048 and the Nyström order 

ranged from 2 to 12. One of the important features to note is that, with enough unknowns, 

the data fit a linear trend line whose slope increases as the Nyström order increases. Since 

the discretization scale h is inversely proportional to the density of unknowns, a linear fit 

on a log-log plot of error versus unknown density reflects the fact that the error scales 

asymptotically as hp, where p (the order of convergence) increases with Nyström order. 

Large values of p signify a high-order algorithm. For the lower Nyström orders, the slopes 

of the lines connecting points of a given order are observed to be close to integers, namely 

2 for order 2: 3 for order 4: and 5 for orders 6 and 8. The slopes for orders 10 and 12 are 

still higher, although even at the highest sampling densities used, the discretization error 

has not yet reached the asymptotic regime where each would be expected to have a slope 
of 7. 

The results for the second-kind integral formulation of the TM polarization case are 

very similar. This should not be too surprising, since, despite the additional derivative, the 
singularity of the kernel is no worse than log(/). 

The corresponding plot for the TE polarization case, also using a first-kind integral 

formulation, is shown in Fig. 3. In the TE case, however, the first-kind integral equation 

involves the 2D hypersingular kernel. The effect of using a more singular kernel is that the 

source must be represented more accurately in order to achieve the same accuracy in the 

cross section, or equivalently, that an equally well represented source (i.e.. one employing 

the same collection of unknowns) produces a less accurate value for the cross section. This 
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FIG. 3. Log-log plol of maximum relative error vs unknown density for 1 Ä-radius circle and TE polarization. 
Each set of points is labeled by Nyström order. 

is easily seen by comparing Figs. 2 and 3. For a given discretization, the calculated cross 
section for the TE case is two or more orders of magnitude less accurate than that for 
the TM polarization. Nonetheless, the TE polarization data also fit linear trend lines with 
integer slopes when the discretization is fine enough. In order from lowest (2) to highest 
(12) Nyström orders, the observed slopes are 2. 1. 3. 3. 5. and 5. 

Cross section calculations resulting from the second-kind formulation of the TE polariza- 
tion scattering problem are generally more accurate than those of the first-kind formulation. 
In fact, as the Nyström order increases, they become nearly as accurate as those for the TM 
polarization case. Again, the reason is that the singularity of the kernel for the second-kind 
TE case is no worse than log(r). which is also the singularity of the kernels in the first and 
second-kind TM polarization cases. 

The process of improving a discretization by reducing the size of the patches is called 
"/i-refinement." This is what has been exhibited in the previous two figures. Keeping the 
number of patches fixed and increasing the number of parameters used to describe the 
source distribution on each patch, on the other hand, is known as "^-refinement." With a 
high-order Nyström code such as FastScat. /^-refinement is accomplished by increasing the 
Nyström order for a given meshing. In general, this is the preferred method for improving 
a discretization for two reasons: one can avoid the usually tedious process of remeshing the 
scatterer. and the accuracy of the answer usually improves faster this way. The data in the 
next plot demonstrate this feature. 

Figure 4 presents the TM and TE polarization data given in Figs. 2 and 3 in a different 
way. The behavior of the calculation for each polarization under /»-refinement is illustrated 
by connecting points corresponding to a fixed number of patches instead of a fixed Nyström 
order. In some cases, data points corresponding to Nyström orders higher than 12 have 
been added. The fact that the data points on a semilog plot can be connected by nearly 
straight lines indicates that p-refinement can achieve exponential convergence, as opposed 
to the geometric convergence that was observed for A-refinement. The convergence rate 
gets higher the larger the patch size. 
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FIG. 4. Semilog plot of maximum relative error vs unknown density for scattering from a 1 /.-radius circle. 
Points corresponding to different Nyström quadrature orders for a fixed patch size are^connected by lines {solid 
for TM polarization and dashed for TE polarization) and labeled by the number of patches. 

With regard to numbers of unknowns, the most efficient way to achieve high accuracy 
is to use a high-order method on large patches. For example, with only four patches and 
a 30th-order quadrature rule, it was possible to achieve an accuracy of 10~6 for the TM 
polarization case and 1(T4 in the TE case. With this discretization, the unknown density is 
about 10 unknowns/wavelength and the arc length of each patch is about 1± wavelengths. 
For lower accuracies, the advantage of using large patches and high-order methods on the 
circle is less clear. As a general rule, the optimum discretization is one that uses large 
patches and high-order methods over smooth regions of the scatterer and smaller patches 
over more highly curved regions. 

A.l.b. 20 A x 2 A ellipse. A 20 Ä x 2 Ä ellipse is a 2D scatterer that is less symmetric 
than a circle, but is still smooth. It is a more challenging scattering problem than a 1 A- 
radius circle for several reasons, not least of which is the fact that "it extends much more 
than a wavelength in at least one dimension. In addition, it is a good candidate problem for 
applying the discretization rule described above. 

In our code, the ellipse is described by the pair of parametric equations. 

.V = a cos u. 

v = b sin u. 
(24) 

where a = 10 A and b = 1 A. A sensible patching, which puts the highest density of patches 
in the most highly curved regions and vice versa for the flatter regions, is obtained if the 
patches cover equal increments in the parameter u. The circumference of a 20 A x 2 A ellipse 
is about 40.64 A. 

We used FastScat to compute the monostatic cross section of a 20 A x 2 A ellipse dis- 
cretized using several different combinations of patch number and Nyström order. The 
boundary conditions on the surface were either Dirichlet or Neumann, corresponding to 
TM and TE polarizations, respectively. 
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FIG. 5.    Monostatic cross section of a 20 A X 2 A ellipse for TM and TE polarizations. One quadrant of 
observation anales is shown: the others mav be obtained bv considerinc the fourfold svmmetrv of the scatterer. 

We do not have at our disposal a series solution for the cross section of an ellipse (which we 
might otherwise use to compute an arbitrarily accurate reference solution). However, we can 
still estimate the accuracy of the computed solutions by comparing them to the most finely 
discretized solution, which we designate the "reference solution." We computed reference 
solutions for the TM and TE polarization cases by meshing the ellipse into 128 patches and 
putting a 20th-order Gauss-Legendre rule (i.e.. 10 sample points) on each patch. We deduce 
that these reference solutions are accurate to at least six decimal places, given the high-order 
manner in which all the more coarsely discretized solutions are observed to converge to 
them. Plots of the monostatic cross section versus incident angle for the reference solutions 
are given in Fig. 5. As seen in the figure, the monostatic cross section for TM polarization 
ranges from about 50 k looking at the broadside to less than 0.1 k looking at the tip. The 
TE cross section is similar, although it is not as smooth a function of angle. In both cases, 
the dynamic range of the cross section is more than 500. 

The /^-refinement behavior of the calculations on the ellipse using first-kind integral 
equation formulations for both TM and TE polarization is shown in Fig. 6. Like the circle, 
exponential convergence is observed and accurate solutions are most efficiently obtained 
when the mesh consists of patches larger than a wavelength. 

A.2. Three-dimensional vector. As in the 2D scalar case, first-kind and second-kind 
integral formulations were explored. For 3D vector scattering off a PEC scatterer, the first- 
kind formulation is the electric field integral equation (EFIE) [17] 

E™(x) = ico i ds -G(x. x') J(x') + - V(V'C(x. x') • J(x')) (25) 

and the second-kind formulation is the magnetic field integral equation (MFIE) 

HJanW = —" x J<x) + f ds'[V'G(\. x) x J(x')]lan, (26) 
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FIG. 6. Semilog plot of maximum relative error vs unknown density for scattering from a 20 ',. x 2 /. ellipse. 
Points corresponding to different Nystrom orders for a fixed patch size are connected by lines (solid for TM 
polarization and dashed for TE polarization) and labeled by the number of patches. 

where G(x. x') = exp(/l-|x-x'|)/|x-x'| is the Helmholtz kernel in 3D. k = |k| =w/c is 
the radiation wavenumber. J refers to the electric surface current. Einc and Hinc are the 
incident electric and magnetic fields, and the subscript ran means that only the vector 
components tangent to surface at the field point are being used. 

The EFIE and MFIE can be summed to form a combined field integral equation (CFIE) 
having some of the same desirable properties as the CFIE in the 2D scalar case. Although 
no CFIE results are reported in this paper, the same techniques apply. 

Note also. that, while the results presented here are restricted to PEC scatterers. it is trivial 
to generalize the method to the more general scattering problem of homogeneous regions 
with smooth boundaries. 

A.2.a. One-fourth k-radius sphere. Writing a code that correctly calculates 3D vector 
scattering results is more difficult than writing a correct 2D scalar code. This is doubly true 
if the code is designed to be high order. Therefore, it is particularly important to verify 
that the output of a purportedly high-order 3D vector code actually converges to the correct 
answer under both /;- and ^-refinement and that it does so in a high-order fashion. In this 
subsection, we present results demonstrating that our 3D vector Nyström code achieves 
high-order convergence to the correct answer on a sphere. 

A sphere is the ideal surface to use for benchmarking a high-order 3D vector code for the 
same reasons that a circle is ideal for a high-order 2D scalar code—it is uniformly smooth 
and the accuracy of computed results can be determined by comparison to the Mie series 
solution. Since the size of the surface, and therefore the number of unknowns, grows in 
proportion to r2 for a sphere, as opposed to just ;• for a circle, memory limitations prevented 
us from pushing the unknown density on a 1 ^-radius sphere to the same extremes as were 
possible on a 1 A-radius circle. Nonetheless, when we did run FastScat on a 1 ^-radius sphere 
with a wide selection of discretizations, we found that the results converged to the correct 
answer just as one would expect for a high-order scattering code. To reach the asymptotic 
regime, where the convergence behavior is more obvious, however, we chose the radius 
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TABLE I 
3D Quadrature Rule and Testing Function Parameters 

Maximum 
Nyström Number testinc Number 

quadrature sample function testing 

order points degree functions 

: 1 0 1 
3 3 1 3 
5 6 -> 6 
7 12 3 10 
8 15 4 15 

of the sphere to be j Ä. which allows us to increase the unknown density fourfold before 
running out of primary memory (for storing the full impedance matrix). For this reason 
alone we present the data for the ^ A-radius sphere. 

The internal surface representation of the sphere corresponds to an ideal sphere and 
its surface is assumed to be perfectly conducting. The coarsest patching of the sphere 
consists of 20 identical triangular patches, formed by mapping the triangles of an inscribed 
icosahedron onto the surface of the sphere. Finer meshes were generated by dividing each 
of the 20 triangles into n2 nearly identical subtriangles. where n ranged from 2 up to 10. The 
distribution of Nyström quadrature points on each patch was determined by a high-order 
triangle rule [16]. The triangle rule orders that we used and corresponding numbers of 
sample points are given in Table I. The number of testing functions (products of monomials 
in the two surface parameters) and the maximum degree of the testing functions used with 
each triangle rule are also listed in the table. 

In all cases except Nyström order 7. the number of sample points equals the number of 
testing functions, resulting in an exactly-determined local correction linear system. In the 
seventh-order case, the maximum testing function degree was chosen to make an under- 
determined linear system. 

Solutions for the bistatic cross section of the \ Ä-radius sphere were computed with the 
various discretizations and compared against the Mie series solution (shown in Fig. 7). For 
a sphere this small, the cross sections for the two polarizations are similar (in terms of 
smoothness and dynamic range), so we present the discretization refinement results only 
for the 6& case. Cross polarization results are also not presented at all. although it may be 
noted that such computed cross sections were extremely small (i.e.. always less than the 
co-polarized results by at least eight orders of magnitude). 

The convergence behavior of the scattering results under /^-refinement is shown in Fig. 8. 
Refining the mesh for a given Nyström order always improves the accuracy of the solution. 
It is apparent for the lower Nyström orders that the data approach linear trend lines with 
integer slopes as the patches get smaller, just as they did in 2D. In the case of the EFIE, 
the slopes of the trend lines for Nyström orders 2 and 3 are both unity and in the case of 
the MFIE. they are 2 and 3. respectively. For the higher orders, the slopes appear to be 
increasing, but it is not as clear what their asymptotic values will be. For Nyström order 5, 
the last pair of points produce slopes close to 3 and 5 for the EFIE and MFIE solutions, 
respectively. In all cases, the solution at a particular discretization obtained by using the 
less singular kernel (i.e.. the MFIE) is more accurate. 
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FIG. 7.    Bistatic cross section of a ± A-radius PEC sphere for 00 and (p<t> polarizations computed by the Mie 

The behavior of the sphere results under p-refinement are shown in Fig. 9. The observed 
/^-refinement behavior is similar to that in the 2D scalar case. The fastest convergence is 
usually achieved by applying a high-order quadrature to a coarse meshing. One notable 
difference from the 2D scalar case is that the 3D vector calculation requires a higher density 
of unknowns to achieve a comparable maximum relative error in the bistatic cross section. 
The jaggedness of the p-refinement curves for the EFIE data may be explained by reference 
to the /(-refinement plot, which shows that the 2nd- and 3rd-order results have nearly the same 
accuracy, and that the 7th-order results are actually less accurate than those for 5th-order. 
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FIG. 8. Loa-loa plot of maximum relative error vs unknown density for ± A-radius PEC sphere in 00 po- 
larization. Points obtained with different meshinas but the same Nyström order are connected by lines. A solid 
(dashed) line indicates use of the EFIE (MFIE) integral formulation. 
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FIG. 9. Semiloa plot of maximum relative error vs unknown density for scattering from a - /.-radius PEC 
sphere. Points corresponding to different Nyström quadrature orders for a fixed patch size are connected by lines 
(solid for MFIE and dashed for EFIE) and labeled by the number of patches. 

For Nyström orders higher than about 8. problems related to ill-conditioning arise in the 
EFIE formulation. Although the increasingly ill-conditioned nature of the local correction 
linear system is a contributing factor, the more important contribution probably comes from 
the fact that the EFIE is especially susceptible to conditioning problems when the Nyström 
sample points get too close together. Unfortunately, this is exactly what happens for the 
higher-order triangle rules. As the order increases, the quadrature points tend to bunch up 
near the edges and corners of the triangle. It may be possible to overcome this problem by 
inventing different high-order triangle rules with better sample point spacing and by usin« 
a better conditioned integral equation formulation such as the MFIE or CFIE (combined 
field integral equation). 

A.2.b. 2 /. x 2 Ä x 0.2 X ellipsoid. As an example of a smooth, but less symmetric 3D 
scatterer. we next consider a PEC ellipsoid with principal axis diameters 2 X. 2 X. and 0.2 X. 
We computed the monostatic cross sections of this discus-shaped scatterer in 88 and cp(p 
polarizations using a MFIE formulation and an eighth-order quadrature rule, which put 
15 points on each patch. Four different meshings. comprising 20. 80. 180. and 320 patches, 
were tried. Each meshing was tailored to put smaller patches in the vicinity of the r = \ X 
equator, where the one of the radii of curvature is small, and larger patches everywhere else, 
where the surface is relatively fiat. The number of unknowns distributed over the 6.47 X2 

surface of the ellipsoid in the four cases ranged from 600 with the coarsest meshing to 9600 
with the finest. 

As we did with the ellipse in 2D, we can designate the solution computed with the 
finest discretization to be the reference solution and obtain accuracy estimates of the other 
solutions by comparing them to this reference solution. Figure 10 shows the reference 
solutions for the 88 and cptp polarization cases. 

Differences between the reference solution and the other, less finely discretized solutions 
are shown in Fig. 11. As expected, the accuracy of the solution improves as one refines the 
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FIG. 10.    Reference solutions for the monostatic cross section of a 2 X x 2 >. x 0.2 X PEC ellipsoid in «w and 
c* polarizations. At 0 the observer is looking at the flattest pan of the ellipsoid: at 90 he is looking edge on. 

discretization. It should also come as no surprise that the solutions are also most accurate 
near 0: and 180:. where the cross section is highest. What is particularly notable about this 
plot, however, is the fact that the error in the cross section decreases by orders of magnitude 
when one reduces the (linear) size of each patch by factors of 2 or 3. Such large reductions in 
the error are a direct consequence of our using an exact surface description and a high-order 
rule (8th-order. in this case) on each patch. 
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FIG. 11. Semilog plot of the differences between cross sections computed using meshings consisting of 20. 
80. and 180 patches, and a reference cross section computed using a meshing consisting of 320 patches. The 
asymmetry of each curve reflects the fact that the meshings did not possess reflection symmetry. 
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B. Run-Time Performance Comparisons 

In this section we compare the run-time performance of our high-order Nyström im- 
plementation of FastScat to that of two method of moments scattering codes. The first 
comparison code is an earlier, high-order Galerkin implementation of FastScat [20]. The 
second is a low-order code (RWG basis and testing functions on flat facets) called FISC 
[21]. We ran each code under comparable conditions to obtain solutions for the bistatic 
cross section in the 09 polarization of three different size PEC spheres. The high-order 
Nyström discretizations were constructed using an eighth-order quadrature rule (15 sample 
points per patch) and fourth-degree testing functions for computing local corrections. The 
high-order Galerkin discretizations were constructed from the same surface mesh using 
patch-based, polynomial (in the parameterization) basis functions up to degree 4 to give 
the same number of unknowns per patch, namely 30. The surface mesh used by FISC was 
necessarily different from that used by both versions of FastScat because, with an RWG 
discretization, one unknown is associated with each edge rather than multiple unknowns 
being associated with each patch. Nonetheless, its surface meshes were constructed to main- 
tain the density of unknowns at about 7.7 unknowns/wavelength, the same as for the both 
FastScat discretizations. All computations were performed using a dense matrix fill, an 
LUD solver, and a MFIE formulation. 

Table II gives a summary of the results. The reported times are run times on a SPARC-10 
workstation with 512 MB primary memory. The total run time is broken into setup time 
(which includes the time spent setting up the problem and filling the impedance matrix) and 
solve time (which includes the time spent performing the LUD and solving for the bistatic 
cross section at 181 angles). 

In comparing the results from the two high-order implementations of FastScat, two fea- 
tures are especially noteworthy. The first is that the high-order Galerkin result is more 
accurate by about a factor of 5 than the high-order Nyström result. The second is that use 
of the Nyström discretization can speed up the setup phase of the computation enormously, 
with the speedup factor increasing as the number of unknowns increases. The observation 
that the high-order Galerkin code computes results somewhat more accurately than the 
Nyström code is consistent with our experience computing cross sections for other scatter- 
ers. both in 2D and 3D. It is compensated, however, by the fact that the setup phase (and 
to a lesser extent the solve phase) runs much faster using the Nyström code. Furthermore, 
the factor of 5 difference in accuracy is actually less significant in this case than it would 

TABLE II 
Nyström vs Galerkin Performance on PEC Spheres 

Radius No. of Setup Solve RMS 
Scattering code 0.) unknowns time (s) time (s) error (dB) 

FastScat (Nyström) 0.9 600 74 36 0.35 
FastScat (Galerkin) 0.9 600 972 88 0.07 
FISC (Galerkin) 0.9 600 83 42 1.28 

FastScat (Nyström) 1.8 2400 539 2742 0.26 
FastScat (Galerkin) 1.8 2400 8177 3395 0.05 
FISC (Galerkin) 1.8 2430 873 2255 0.61 

FastScat (Nyström) 2.7 5400 1953 31735 0.097 
FastScat (Galerkin) 2.7 5400 38803 36152 0.021 
FISC (Galerkin) 2.7 5880 8230 28795 0.723 
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be if we were comparing low-order codes. Given the ö(/?q) convergence rate expected of 
an eighth-order quadrature rule, it should be possible to recover the factor of 5 in accuracy 
with further //-refinement by a modest 209r. 

The high-order Nyström code computes more accurate answers than the low-order 
Galerkin code (FISC) in all cases. For the spheres considered here, this is largely due 
to the fact that FISC uses a low-order surface representation. The high-order Nyström code 
also requires less setup time, an advantage that grows as the problems get bigger. Even a 
comparison based on total solution time shows the high-order Nyström implementation of 
FastScat to be more efficient for computing accurate answers. 

Finally, it is useful to note that an equivalent Nyström discretization exists for even- 
method of moments discretization and vice versa [22]. so it is possible, at least in principle, 
to eliminate the observed accuracy discrepancy between the two versions of FastScat by 
implementing a Nyström code whose discretization error precisely matches that obtained bv 
the Galerkin code. We have not attempted to do this, but suspect that to do so would entail 
additional complications and computations that would negate the substantial simplicity 
and efficiency of the present implementation. On balance, we find the high-order Nyström 
method in its present form preferable to the high-order Galerkin method for solving integral 
equations, especially when one adds in its other benefits such as reduced implementation 
complexity and potential for significantly improved FMM performance. 

V. SUMMARY 

The standard Nyström method is a simple and efficient mechanism for discretizing inte- 
gral equations. We have shown how it can be adapted to provide a high-order discretization 
of the boundary integral equations of wave scattering in 2D and 3D. which have singular 
kernels. Numerical results obtained with a software implementation of this method show- 
that the algorithm can achieve high-order convergence to the correct answer for scattering 
cross sections in 2D and 3D. We also demonstrated that a high-order Nyström code consid- 
erably reduces the CPU time cost of a scattering calculation by comparison to a high-order 
Galerkin code, especially the precomputation time cost. The high-order Nyström code also 
outperformed a well-tuned, low-order Galerkin code (FISC) in terms of solution accuracy 
and total run time. Demonstrations of how a high-order Nyström code can be used in con- 
junction with the FMM to reduce the memory and CPU time requirements of solving large 
scattering problems will be the subject of a future publication. 

APPENDIX 

A. Local Corrections 

Eleven different kernels arise in boundary integral equation formulations of 2D scalar, 
3D scalar, and 3D electromagnetic scatterine: 

2D & 3D Scalar 

G(r) 

n ■ V'G(r) 

n-VG(i-) 

(n- V)(n'- V'G(r)) 

3D Electromagnetic 

G(r)(t(x)-t'(x')) 

t(x) • (V'G(r) x t'(x')) 

(t(x)- V)(V'G0-)-t'(x')) 
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where 

{H!,(kr)   in 2D. 
£('•)= < V (27) 

in 3D. 

r is the magnitude of the vector r == x - x from the field point at x to the source point 
at x': k is the wavenumber of the waves: n and n' are the unit normals to the surface at 
the field and source points, respectively: V and V are gradient operators for the field and 
source coordinates, respectively: and H^' refers to the zeroth order Hankel function of the 
first kind, defined by //„"(.v) = ./0(.v) + iT0U). where 7„(.v) and }'„(.v) represent mh-order 
Bessel functions of the first and second kinds, respectively. 

For the 3D electromagnetic case, the source and excitation are surface tangent vectors so 
it becomes necessary to compute local corrections for four scalar kernels, one for each of the 
four combinations of (two) independent surface tangent vectors at the field point and (two) 
independent surface tangent vectors at the source point. These surface tangent vectors at 
the field and source points, represented by t(x) and t'(x'). respectively, are included as part 
of the 3D electromagnetic kernel in recognition of this fact and for clarity of presentation. 

In this section, we show how to compute local corrections for each of these kernels. We 
will make use of the vector calculus identity [23] 

(n • V)(fV • V'g(r)) = (n • n')(V • ?'{•{>■)) - (n x V) • (fV x V>(;-)) (28) 

= (n • h')k2g{r) - (n x V) ■ (fV x V's(r)). (29) 

where the second line follows if g(r) obeys the homogeneous Helmholtz equation 

(V:+A-2)«(/-) = 0. (30) 

This identity allows one to convert between double normal derivative and double tangential 
derivative operators on the Green function. 

A.I. Two-dimensional scalar. 
A.l.a. G(r). 

G(r) = J<VT) = ^o(kr) - ]-Y0(kr). (31) 

This kernel may be written as the sum of a regular part and a singular part. It is necessary 
to compute local corrections only for the singular part because the regular part will be 
efficiently integrated by the underlying high-order quadrature rule. The function Y0(kr) 
contains a log(r) singularity. Therefore, one can use "lin-log" quadrature rules [24] to 
efficiently compute local correction integrals when the region of integration contains the 
field point, and Gauss-Legendre rules otherwise. 

A.l.b. n    V'G(>-), 

re«ular regular 
regular  /_^ s y-^~,    singular 

n .VG(/) = —--C(/-) = --A-(n • r) -j— + -— krY^kr).       (32) 

—-v ' 
singular 
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The first term is regular: the second is singular. The second term is singular not because 

its value diverges at the origin (in fact. lim,._o(n' • r/r2)krYi(kr) = 1/.T/?. where R is the 

radius of curvature of the surface at the field point), but because its higher derivatives do. 

The singularity is still a log(r) singularity, so local correction integrals can be computed in 

the same manner as for the previous kernel. 

A.I.e. n   VG(r). 

-   ,-,„ n   r d 
n • VG(r) = G(r) = -A-(n ■ r) 

;•   dr 4 kr 

regular regular 
regular / * s ^-^-*.    singular 

i .-,^T^^^I(AT)      1 n • r' 

recular 

This kernel is identical to that for n' • V'G(r) with n' replaced by -n and it has similar 
properties. 

A.l.d.  (n- V)(n' • V'G(r)). 

(n- V)(n'- V'G(r)) 

(n-D(n'-r) (\ dG(r)     d2G(r)\      (n-h')dG(r 

r    dr dr- dr 
(34) 

4 
,.   T?J\(kr)      (n-D(n'-r).     , 
(n • n ) — J-y(kr) 

kr r- 

+ (n- V)(n'- V'GÄ(;-)). 

hypersinsular 

(35) 

Applying the derivatives to the real part of G(r). namely G V) = -^Y0(kr), produces a 

term that is not merely singular but hypersingular. When convolved with a regular function, 

this term is not (in general) integrable because it diverges like 1/r2, relative to the field point. 

The following discussion shows how to manipulate it into a form that allows numerical 

evaluation when the region of integration contains the field point. When the region of 

integration does not include the field point. Gauss-Legendre rules may be used. 

The convolution of (n • V)(n' • V'GV)) with testing function f(\') is 

/ dl'(n- V)(n ■ V'GV))/(X'). (36) 

Strictly speaking this is not a proper integral unless it is assumed to represent the limiting 

value as the field point approaches the surface from off the surface. We implicitly make 

this assumption throughout. Using the vector identity (29) and the fact that GR(r) obeys 

the homogenous Helmholtz equation when x is not on S, we can convert the double normal 
derivative operator to a double tangential derivative operator: 

/ dl'[k2{h ■ n)GR(r) - (n x V) • (n' x V'G* ('•))]/(x'). (37) 
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In 2D. we can rewrite the second term even more explicitly in terms of tangential derivatives, 
obtainins 

/ dl'[k2(i\ ■ h')GR(r) - (t ■ V) (F • V'GV))]/(X'). (38) 

where t and F are unit tangent vectors at the field and source points, respectively. The first 
term has a log(r) singularity, which we already know how to integrate numerically: the 
second term is hypersingular and requires further manipulation. 

The gradient operators V and V commute with the unit tangent vectors F and F respec- 
tively, so we can rearrange the factors of the second term and integrate it bv parts as 

/ dl'it- V)(F-V'GV))/(X') 

= - / dl'f(\')i' ■V\i-\JGR(r)) 

= - I dl'l- V'(/(x')(t-VCV))> 

+ / dl'it'- V'/(x'))(t- VCV)) 

(39) 

(40) 
ic 

The first integral on the right-hand side of (40) is 

- [ dl'i'-V'(f(x')(i-VGRir))) 

= - f d)'-V'(f(x')(i-VGR(r))) (41) 

= -[/<x')(t-VGV))]c;: (42) 

i.e.. since the integrand is a total derivative, the value of the integral is a difference of values 
at the endpoints. Rearranging factors and using 

VGV) = -V'GV). (43) 

we can rewrite the second integral as 

- I dl'V'GRir) •[{({'• V'/(x'))]. (44) 

In this form, the integral is not yet evaluable because V'GRir) diverges like \/r relative to 
the field point. We can make it integrable by adding and subtracting a smooth function that 
matches the integrand at the field point. Specifically, let us write (44) as 

-j dl' VGR(r) ■ [t(i' ■ V'/(x')) - t'(t • V'/(x))] - f dl' V'GV) • [t'(t • V'/(x))]. 

(45) 
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where t • V'/( x') and t-V'/(x) represent tangential derivatives of the testing function /'(x) 
evaluated at the field and source points, respectively. The first integral in this expression is 
integrable because the zero of 

[t(t'-V'/(x'))-t'(t-V'/(x))] (46) 

at the field point cancels the pole from V'GV) at the field point, leaving a singularitv no 

worse than log(r) relative to the field point. By rearranging factors, the integrand of the 

second integral can be shown to be a total derivative, so that 

- I dl'VGRir)-[i'(i- V'/(x))] 

= - / rf/'t'-(V'GV)(t-V7(x))) (47) 

= -[G*(r)<t-V7(x))]£. (48) 

Putting the various terms together, we arrive at the following numerically tractable expres- 
sion for the integral needed to compute local corrections for the hypersingular component 
of the kernel 

j dl'{k2(n ■ n)GR(r)f(x) - V'GR(r) • [t(t' ■ V'/(x')) - t'(t • V'/(x))]} 

- [/(x')(t • VCV)) + GR(r)(i • V7(x))]£. 

or. substituting for GR(r). 

~ f dl'{(n-n)Yo(kr)f(x)+)-^lr 
4 Jc      I kr 

-df    ,       „df 

AT dl 

TO 

(49) 

(50) 

A.2. Three-dimensional scalar. 

A.2.a. G(r). 

G(r) =   
. sin(AT)      COS(AT) 

( 1 . 
/■ r 

regular sincular 

(51) 

As in the 2D scalar case, this kernel may be written as the sum of a regular part and a singular 

part. It is necessary to compute local corrections only for the singular part because the 

regular part will be efficiently integrated by the underlying high-order quadrature rule. 

The singular term contains a \/r singularity. Computing local corrections for the singular 

part requires evaluation of integrals of cos(kr)/r times polynomials in the parameters 

u = (;/'. ir) used to describe the surface. When the region of integration contains the field 

point, it may be subdivided into triangles with the field point at one vertex, and the integration 

may be performed by using the Duffy transformation [25] and Gauss-Legendre product 
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rules on the subtriangles. Otherwise, one can apply efficient quadrature rules tor smooth 

functions such as high-order triangle rules [16]. 

A.2.b. n -V'G(r). 

n    V'G(r) = 
n • r d 

-Gir) = 
(/AT- ])clkr n 

= ik 
, (cos(AT) 

(AT)
2 (rV • r) - (COS(AT) -f- (AT)sin(A/) (53) 

In 2D. (rV • r)/r2 is a regular function with a removable singularity at the origin. In 3D. the 

singularity is removable only if the principal radii of curvature of the surface at the field 

point are the same. Otherwise its limiting value depends on the direction from which the 

origin is approached. Nonetheless, local correction integrals can be computed efficiently by 

means of triangle subdivision and the Duffy transformation. 
A.2.C. n   VG(/-), 

, ' "   regular regular 
.   „„ (COS(AT)-^) ^^    . -  
n   VG(r) = -it    (n-r) + (cos(AT) + (AT)sin(AT) 

This kernel is identical to that for n'• V'G(r) with rV replaced by -n and has similar 
properties. 

A.2.d. (n- V)(n'- V'G(r)). 

(A- V)(n'- V'G(r)) 

1 - /AT 
= (n-n ) e     + (n-r)(n • r) 

A2/-2 + 3/AT - 3 

if 
' sinlkr) 

(AT)
2 

>   reeular 

COS(AT)) ^T^ ^ 
— (n • n ) + A- — 

regular 

(55) 

\ 
inlArl        , / ^^ - m«kr)\ regular 

(*•/■)- 

(AT) 
(n • r)(n' • r) 

+ (n-V)(n'-V'CV)) 

hypersingular 

(56) 

Applying the derivatives to the real part of G(r). namely GR(r)= COS(AT)/;-, produces a 

term that is not merely singular but hypersingular. When convolved with a regular function, 

this term is not (in general) integrable because it diverges like 1 /r} relative to the field point. 

The following discussion shows how to manipulate it into a form that allows numerical 

evaluation when the region of integration contains the field point. When the region of 
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integration does not include the field point, standard, high-order rules for integratine regular. 
two-parameter functions may be used. 

The convolution of (n • V)(n' • V'G V)) with testing function f(x') is 

or 

/ ds'in- V)(n'- V'GRix. x'))/(x') 

/ ds'[k2(n ■ n')Gs(x. x') - (n x V) ■ (n x V'GÄ(x. x'))]/(x' 

(57) 

(58) 

where the second form follows from Eq. (29). As in the 2D case, we implicitly assume a 
limiting procedure whereby the field point approaches its final destination on the surface 
from off the surface. The first term in brackets is only singular like \/r: we already know 
how to deal with such expressions. It is the second term that requires further attention. 
Write this term in component form using the Levi-Civita tensor f,M and manipulate the 
expression as shown using the fact that x and x' are independent. Summation over repeated 
indices is implied. 

- / ds'(in x V) ■ (rV x V'Gfi(x.x')))/(x') 

= -(n x V) •  / ds'(n x V'G/?(x. x'))/(x') 

= -€jjknjdk 

= -€Uknj 

= -€ijk"j 

US 
ds'(n xVGR(x.x'))fix) 

Us 
ds'(n x V'(dkG

Rix.x')))fix) 

ds'n x V'(f(x')dkG
Rix.x') 

ds'dkG
Rix.x')in x V'/(x')) 

Us 

(59) 

(60) 

(61) 

(62) 

The last step shows the result of integrating by parts. Letting 

ii = fix')dkG
Rix.x). 

we apply an adjunct to Stokes"s theorem. 

dsih x VVO = i  d\i/ 

to the part of the first term inside the brackets, to set 

-e,M«, ds'n'x V'(fix')dkG
Rix.x')) 

= -tijknj dl'f(x')dkG
Rix.x) 

us 

(63) 

(64) 

(65) 
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- - i   dl'-In x VC"ix.x'))fix'). 
■Ins 

which is integrable. To evaluate the rest, use the fact that 

VG'lx.x') = -V'GR(x.x') 

to write 

(66) 

(67) 

(68) 

(ilk»/ ds' dkG
R(x. x')(n' x V'/(x')) 

Us 

= - / ds'3'kG
R(x.x')€k,J(n x V'/(x')),/;; 

= - / ds'VGR(x.x')-[(n x V'/(x')) x n]. 

At the field point, the vector in brackets becomes 

(n x V'/(x')) xn = -fix(nx V'/(x')) = V,;/(x'). 

(69) 

(70) 

(71 

Some notation from differential geometry is useful at this point: 3(,x = 3x/3«" is the 
derivative of the surface with respect to surface parameter u>'; $>fn. is the metric tensor given 
by d„x • 3,x: g1" is the inverse of #„,.: « is the determinant of #„,; and d' f represents the 
derivative of / with respect to «".i.e.. d'ßf = df(\'(u))/du". 

Thus, in the language of differential geometry, the vector in brackets becomes 

3,ßfd;lx=g^d;fd,
llx = 

a"d'x' 

V^Mu) 

when aß is defined as 

\/g(u)f;»vd'vf 

evaluated at the field point. Therefore, we may write 

- / ds' VGR(x. x) ■ [(n x V'/(x')) x n] 

a: 

(73) 

= / ds'V'GR(x. x) ,    ,     c*"a,'x' n x (n x V f(\')) + —-^— 

- / ds'V'GR(\.\) 
Q-"a;x' 

Vgw_ 
(74) 

The first term is integrable because the zero of 

,      ,        a"d',\' 
n x (n x V f(x ))+    ,  " (75) 
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at the field point cancels one of the two poles from V'Gs(x. x') at the field point. The other 
term mav be rewritten as 

- / ds'V'GR(x.x 
a"9;,x'i 

v/,?<u) 

= - / ds'VJG
R(x.x')- 

a"9;x'i 

v/smiT 

,    ,    (   R a»d'x'" 
dsV  •    G*(x.x)-=^=_ , 

s V VglüiJ' 

(76) 

+ a" / ds'GR(\.\')V' (77) 

where the last step shows the result of integrating by parts. The part of the first term in 
parentheses has no normal component so it can be converted to a boundary integral using 
the divergence theorem for open surfaces (see Appendix B): 

- / ds'V ■ (GR(x.x)—ä= 
Js "    V VgW 

(d\ xfV)- IG
R
(X.X')—JL= 

as \ V<?(u) 

= -&   di ■ [n'x (aßd'\ 
Jas 

GR(x.x') 

VgW 

(78) 

(79) 

The second term is zero since (see Appendix C) 

9,'X 
VJ?(") 

= 0. (80) 

Putting the various terms together, we arrive at the numerically tractable expression for 
the integral needed to compute local corrections for the hypersingular component of the 
kernel. 

ds (A-2(n • h')GR(x. x')/(x') + V'G*(x. x ,      ,        aßd'x' 
n x (n x V f(\')) + ——t= 

VS(ü) 

-<f>  </l'-((nxVGs(x.x'))/(x) + (Ä'x (a»d'x'))(±l^£± 
Jas        V v        v      "   "   y/g(ü) 

(81) 

where 

a" = y/gWg^d'Jix'W). (82) 

evaluated at the field point. The first integral is a surface integral whose integrand diverges 
no worse than 1 /r near the field point: the second is a boundary integral of a regular function 
(so long as the field point is never situated on the boundary). 
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A3. Three-dimensional vector. 
A.3.a. G(/-)(t(x) -t'(x')). 

This kernel is identical to G(r) in the 3D scalar case, except that the regular function 
with which it must be convolved is the inner product of a tangent vector t(x) at the field 
point and a tangent vector t'(x') at the source point. Four sets of local corrections must be 
computed for each field point since there are two independent tangent vectors at each field 
point and two at each source point. 

A.3.b. t(x) • (V'G(r) xt'(x')). 

t- (V'G(r) x t'(x')) 

,    ,-,.,. (t'(x') x t(x))-r 1 
= Ukr-\)e'h ;  (83) 

r- -r 

regular 
\ reeular 

' "'"'*"   -cosOt;-)) _ lk.       k,  i((t(x) x t      }) . r) 

(A.T )" 

regular 

sineular 

((t(x) x t'(x'))-r) 1 
+ (cos{kr) + (kr)sin(kr)) - . (84) 

y r- r 
 ' ■—»■»-■™»™ i liming -n     i • 

singular 

The analysis of the singular component is as follows. We can write t(x) in terms of surface 
derivatives at the field point 

t(x) = f%x (85) 

with some pair of coefficients (". ß = 1. 2. Letting u' denote the parameterization of the 
source point relative to the field point, we can write the expansions fort'(x') and r(x') about 
the field point. 

t'(x') = $"a;x' = £"(dpx + dPdnx a'° +•..). (86) 

for some other pair of coefficients %p with p = 1. 2 and 

r(x') = 3T\ii'
T + ■■■. (87) 

Then 

((t(x) x t'(x')) • r) = C"!p(3„x x dpx + 3tlx x dpdnxu'° + ■■■)■ (9rx«'r + • • •)    (88) 

= £'V((9„x x dpdaX) ■ drx)u'ni,'T + ■■■. (89) 

Since the leading term in 1 //-: is also second order in u'. the ratio ((t(x) x t'(x')) • r)//-2 does 
not diverge in the limit as ;• -> 0. However, like the factors (n ■ r)/r2 and (n • r)/r2 from the 
3D scalar case, this ratio is not a regular function unless the principal radii of curvature at 
the field point are identical. Computation of local correction integrals for each combination 
of tangent vectors at the field and source points proceeds as in the corresponding 3D scalar 
case. 
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A.3.C. (t(x)-V)(V'G(r)-t'(x')) 

(t(x)- V)(V'G(r)-t'(x')) 

= (t-t' 

= ik3 

1 - ib 
Jki e'K' + (t-r)(t -r: 

k2r2 + 3ikr-3 

resular 
reeular 

(90) 

f sin(A'r) 
-s reeular 

k   --COS(AT) )^—^N       , HtT kr (t-t)+A-  
(kr)2 

(kr) 

-COMATIN regular 

-<t-r)(t'-r) 

resular 

■(t- V)(V'GR(;-)-t') (91) 

hypersingular 

The result is very similar to that in the 3D scalar case. The real part of G(r). namely 
G {r)= cos(kr)/r. produces a hypersingular term that is not (in general) integrable be- 
cause it diverges like 1/r3 relative to the field point. We now show how to manipulate it 
into a form that can be evaluated numerically when the region of integration contains the 
field point. 

Reformulating the integral of the hypersingular term begins with an integration by parts: 

ds'iUx)- V)(V'Gs(x.x')-t'(x')) 

ds't'(x')- V,|(t(x) • VGÄ(x. x')) 

=     ds'Vl •[t'fx'Ktfx)-VGR(x.x'))] 

-   / ds'(t(x) • VGß(x. x'))(V|; • t'(x')). 

(92) 

(93) 

The first term on the last line can be converted to a boundary integral using the divergence 
theorem for open surfaces (see Appendix B) and the fact that the argument of V[r is tan- 
gential to the surface: 

J ds' V,; • [t'(x')(t(x) • VG*(x. x'))] = I dl(e • t'(x'))(t(x) • VG*(x. x')).   (94) 

The second term is 

■ / ds'(t(x) • VG*(x. x'))(V,; • t'(x')) = / ds' V'GV- X') ■ [t(x)(V: • t'(x'))].   (95) 
Js Js " 

Write this as 

ds'V'GR(x. x) 
,    ,        aßd'„x' 

t(x)(V  -t(x ))--=£= +   / ds'VGR(x. x'). 
a»d'ßx' 

y/gW. 
■   (96) 
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where the constant a" is chosen to make t(x)( V ■ t'(x')) and a"Ö;',x'/VsT"> equal at the 
field point. In other words, a" is defined as 

v/?<u)s'"'(t(x> ■ 3,'.x')(V • t'(x')) (97) 

evaluated at the field point. The first term is integrable because the zero of 

a"d'\- 
t(x)(V' -t'(x') 

y/g(U) 
(98) 

at the field point cancels one of the two poles from V'GR(x. x') at the field point. As shown 
in the 3D scalar case, the second term reduces to the boundary integral: 

ds'V'GK(x.x') 
a"d;,x 

d\ ■  n' x fa"3'x' 

VJw. 
G^x; 

as y/gW 

idn'icR' X. X 
o"a;,x' 

y/glüj J' 

(99) 

(100) 

Putting the various terms together, we arrive at the numerically tractable expression for 
the integral needed to compute local corrections for the hypersingular component of the 
kernel. 

ds'V'GR(x. x) 
JS 

,     ,    ,         «"9,'x' 
t(x)(V, -t(x)) -JL= 

•Jg(U) 

+ i   dl'e- ( (t(x> • VGÄ(x.x'))t'(x') + C/?(x.x')^=äL 
■)<tS \ y/flW 

(101 

where 

a" = y/gwg^wx) ■ a.'.x'xv; -t'(x')) = V/JMID^'WX) ■ d'vx')(gpo3'pi ■ a;x').  <i02) 

evaluated at the field point. The first integral is a surface integral whose integrand diverges 
no worse than \/r: the second is a boundary integral of a regular function (so long as the 
field point is never situated on the boundary). 

If. as suggested in Section III.C.3. the /zth tangent vector at the field point (with surface 
parameter u0) is given by 

t„(u) = 9,,x(u) (103) 

and the vth vector testing function associated with scalar testing function /a'(u) is °iven 
by 

,/-, 9,,x(u)   .... 
t,,u(u) = -^=fa\u). 

Vgiüj 
(104) 
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then Eq. (101) simplifies to 

Jds'VG*(x.x) ■ (a,1x91:/
,i,iu) - a;x'31'./

,*l(uo))/v',7(ü) 

+ I die ■ (G
R

(X.x')a;./a'(u0)a;x' + (a„x■ vc*(x.x'))/a'<u)ö,'x') \Jm. 
J'dS 

(105) 

B. Divergence Theorem for Open Surfaces 

Substitute 

B = nxA (106) 

into Stokes's theorem 

/ rfsn-(V x B) = <*   dl  B (107) 
./S JdS 

to get 

dsh-(V x (n x A)) 

=  / ^5 n ■ [n(V • A) - (n • V)A - A(V • n) + (A ■ V)n] 

=  / rfj[(V„ -A)-(n-A)(V-n)] 

= f dl- n x A) 
Jas 

= i (dl > n) A 
■fas 

= I  die A. 
Jas 

(108) 

(109) 

(110) 

(111) 

(112) 

where we have used the definition of tangential gradient 

V,| = V-fi(n.V) (113) 

and the following equation which relates the vector line element dl and the surface normal 
n to the scalar line element dl and the unit edge vector e, 

dl x n = die, (H4) 

and the observation that 

ft-[(A- V)n] = [(A- V)n]-n= -(A ■ V)(n • n) = 0. (115) 

In other words, the divergence theorem for open surfaces is 

/dj[(VrA)-(n-A)(V.ii)]= (f dle-X= I (dlxh)-A. (116) 
Js Jas Jas 
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which simplifies to 

ds(V, ■ A) = d   dl e ■ A = i  (d\ x n) ■ A (117) 
5 J;<S J;,s 

when A is everywhere tangential to S. 

C. Proof that V[ • [d'llx'/^uT)]=0 

Note.    Summation over repeated indices is implied: 

V' • 
y/gW. \Vgiü)J     p 

sPCT   /     a;,x'-a;x' 

^a 

(9;x'-3;a>'-w^3>'.9;3>') 
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A Prescription for the 
Multilevel Helmholtz FMM 

MARK F. GYURE AND MARK A. STALZER 

HRL Laboratories 

The authors describe a multilevel Helmholtz FMM as a way to compute the field 
caused by a collection of source points at an arbitrary set of field points. Tlieir 
description focuses on the algorithm's mathematical basics, so that it can be 

applied to a variety of applications. 

\he fast multipole method for  the  scalar 
TU«] I__I.  ■ ,w-,7 ."K._. A'- Tl    . , _ __ 
Helmholtz equation, (V2 + **)«? = 0, is com- <t(r) = J *'r—i^') 
monly used to compute acoustic- and elec- 5      r~r\ 
tromagnetic-scattering cross sections.1-2 

Ronald Coifman, Vladimir Rokhlin, and Stephen 
Wandzura3 described a single-level scheme, which has 
been implemented in two and three dimensions for scalar 
and vector scattering problems.4-6 The method has been 
subsequently extended to multiple levels, again with an 
emphasis on electromagnetic scattering.7,8 

In this article, we'll focus on the basic multilevel FMM 
algorithm as a way to quickly compute the field caused 
by a collection of Helmholtz source points at an arbi- 
trary field point. To keep our description of the imple- 
mentation simple, we'll assume that the field is desired 
at each source point, as would normally be the case when 
constructing an impedance matrix for a physical prob- 
lem. Through this basic, but detailed, description, we 
hope to make the multilevel Helmholtz FMM more ac- 
cessible for a variety of problems. 

(1) 

The mathematical preliminaries 
Previous research on the FMM has taken two ap- 
proaches. The first3 starts from the standard integral 
equation for a field arising from an arbitrary source dis- 
tribution assumed to be localized to surfaces: 

This approach then manipulates the integral equation 
by substituting two identities: one, a form of the Gegen- 
bauer addition theorem, and the other, a plane wave ex- 
pansion for spherical Bessel functions. The result is an 
expression for Equation 1, from which it is straightfor- 
ward to construct an algorithm for computing the field in 
0(AP ^operations, where JVis the number of unknowns 
describing the entire source distribution. Extension to a 
multilevel FMM that scales as 0(2Vlog-' N) is also possi- 
ble through this approach. 

The other approach, taken by Rokhlin in the original 
Helmholtz FMM paper and the one we use here, uses 
the language of multipole expansions that are valid ex- 
terior or interior to groups containing an arbitrary num- 
ber of source or field points. In this approach, the essen- 
tial point is that diagonal transforms exist for translating 
the origins of both interior and exterior expansions of 
charge distributions as well as for converting exterior ex- 
pansions to interior expansions. 

Rokhlin has already described the mathematical details 
involved m constructing exterior and interior expansions 
and has provided proofs of the various theorems involv- 
ing translation operators.2 We'll now provide a concep- 
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mal framework in which manipulation of off- 
centered expansions through diagonal transla- 
tion operators and efficient transforms is a com- 
pletely natural way to view the FMM. This 
approach is not only more general, but also bet- 
ter-suited for describing the multilevel FMM. In 
particular, it also makes clear why the interpola- 
tion and filtering steps that are necessaiy in the 
multilevel FMM must be treated carefully. 

Multipole expansions and translation 
operators 

Consider two well-separated spheres of radius 
R[ and R2, each containing a collection of points. 
We'll take the points inside R{ to be Helmholtz 
point sources and the points inside R2 to be field 
points at which we would like to ev:;i:;.:te the 
field caused by the collection of SOU-CXJ ;n Rx. 
This field, written as a multipole expansion2 

valid outside Ru is 

v^)=X/U/(^WM, (2) 
bit 

where r, 8, and <J> are relative to a coordinate sys- 
tem centered in Ru b£kr) are sphen::ai Hankel 
functions of the first kind, and F;m(6. o) are the 
normalized spherical harmonics. We'll refer to 
this expansion as an exterior or h-expansion. 
Similarly, we can write an expression for the 
field valid inside Ry. 

bn 
(3) 

where r, 9, and § are now relative to a coordi- 
nate system centered in R2, and j/{kr) are spher- 
ical Bessel functions. We'll refer to this expan- 
sion as an interior or j-expansion. For the 
moment, we will consider both of these to be 
infinite sums. The FMM then rests on three 
observations: 

• The origin of the h-expansion (Equation 2) 
can be shifted arbitrarilyinside Ru and a 
new set of coefficients, ßlm, can be com- 
puted for this new expansion. The same 
holds for shifting a j-expansion (see Equa- 
tion 3) arbitrarily to a new origin inside R2, 
which results in a new set of coefficients, 

• An h-expansion valid outside R\ can be 
translated and convened into a j-expansion 
valid inside R2, resulting in a new set of co- 
efficients for the j-expansion, y^,. 

• Most crucial, these translations cr.1. be done 
efficiently by transforming the coefficients 

into a basis in which both translation oper- 
ators are diagonal. We'll illustrate this be- 
low by constructing a diagonal form for the 
h-expansion translation operator. The 
FMM, with one or multiple levels, is now 
basically a sequence of combinations and 
translations of multipole coefficients re- 
sulting in an expansion for the field that can 
be easily evaluated at any point inside an- 
other group. 

Generalized addition theorems for partial 
wave expansions and their corresponding ex- 
pressions for the translation of multipole coeffi- 
cients have been known for many years."10 

Rokhlin, however, was the first to realize that 
these translation operators could accelerate the 
numerical computation of fields obeying the 
Helmholtz equation. A general expression ex- 
ists for translating the coefficients of multipole 
expansions that are solutions to the Helmholtz 
equation; the specific forms of interest here are 

Itri M 

im- M 

where dim I tm \pq) is proportional to the well- 
known 3 j symbols involving products of three 
spherical harmonics: 

c(im\rm'\pq) = ir+»-l\jkV^(kg,kt) 

M^W*"**)-       (7) 

Following Rokhlin, we will refer to the func- 
tions Xpq and n,? as translation operators. They 
have the forms 

XM = 4^,(*ru)r^(fli2,«,2) and (8) 

ßp^^pi^uKKAi). (9) 

In the above expressions, *12, 912( and $l2 refer 
to the coordinates associated with the vector 
pointing from the expansion's original center to 
the new center. 

The problem with using the above expres- 
sions directly in a computational scheme is that 
an individual coefficient such as ß,m depends on 
a sum over all the original coefficients ßr„- and 
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on a sum over a set of indices associated with the 
translation operator and 3j symbols. Even with 
truncation of the multipole expansion to a finite 
number of terms, L, this approach is not practi- 
cal. A computationally viable scheme—that is, 
one that scales no worse than 0(L2)—requires 
diagonalizing this transformation, meaning that 
each coefficient can be translated independently 
of all the others. The problem, then, is to find a 
representation in which this translation is diag- 
onal. This representation is often called the far- 
field representation, and the transform that diag- 
onalizes the two translation operators is the 
far-field transform. 

Following Rokhlin, we define the far-field 
transform and inverse transform of an arbitrary 
function/as 

/(*»»*♦) = 2/'r*»(*e>**)/*» and (10) 
hn 

fim=\dk-lY!m(kd,kt)f(ke,kt) . (ID 

This is basically just a spherical harmonic trans- 
form that rotates a function from one basis to 
another in exact analogy to a Fourier transform. 

Consider the specific case of translating an h- 
expansion to a new origin, which means trans- 
forming the set of coefficients a^. By taking the 
(inverse) far-field transform of a and X in Equa- 
tion 5, the far-field transform completely diago- 
nalizes the transformation of the as—that is, 

&lm = jdkr'YZ.fakf^kJafa,^ 
(12) 

or, equivalent^ through a far-field transform of 
Equation 12, 

ä{ke,^) = X(ke,kp)a[kd,k^ (13) 

Even more useful computationally is that the in- 
verse transform Xi„ simplifies to 

hn 

= eikxl2cosy ,04) 

where y is the angle between (812, <})I2) and (kQ, 
&$). Because X is also the translation operator for 
j-expansions, the same analysis applies to the 
translation of interior expansions. 

The translation operator X represents a "lo- 

cal" shift in the group center, retaining the ex- 
terior or interior expansion. The translation of 
an h-expansion into a j-expansion is through the 
translation operator \L, which, in the far-field ba- 
sis, has a similar form to X, 

Kk"k*) = li'(21 + 1H**l2rPl{«xr), (15) 

but with considerably different mathematical 
behavior. The translation operator [i is qualita- 
tively different than X in that no simpler expres- 
sion exists. In fact, the infinite sum diverges, and 
the mathematical consequences of this diver- 
gence require careful attention in a rigorous 
treatment of the FMM. But, a numerical imple- 
mentation that uses truncated multipole expan- 
sions needs only a finite number of terms to 
achieve a given accuracy in the translation.2 

Hence, the divergence of the infinite sum has 
no practical consequences. 

So far, our description of multipole expan- 
sions and translation operators has not covered 
two significant issues. We haven't discussed anv 
of the theorems that prove that the multipole 
expansions themselves converge to a specified 
accuracy in a number of terms approximately 
proportional to the group radius. Also, we 
haven't discussed truncation of the series for the 
h-to-j translation operator, n. These issues are 
important in numerical implementation because 
the algorithm's accuracy depends critically on 
the number of terms kept in these series. How- 
ever, Rokhlin has already adequately addressed 
these issues.2 

The above expressions for translation opera- 
tors, together with the far-field transform, are 
the basic tools used to construct a multilevel 
FMM algorithm. Clearly, the field caused by a 
collection of sources inside an arbitrary group 
Gi can be evaluated at any point inside a second 
group G2 by converting the exterior h-expan- 
sion, valid outside Gj, to an interior j-expansion 
valid inside G2. We can translate the coefficients 
of the j-expansion to any point inside G2. Also, 
we can calculate the field at that point caused by 
the sources in G] by computing QQO, the leading 
term in the j-expansion. No other terms con- 
tribute, because the expansion is already cen- 
tered at the field point where r = 0 and all the 
terms ji„(0) are zero except j00, which is one. 
Thus, we can evaluate the field directly through 
the far-field transform as 

t>{0) = ä00=^jäkä(ke,^). 
(16) 
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Interpolation and filtering 

One crucial issue remains in constructing an 
efficient multilevel algorithm that scales prop- 
erly. The multilevel Helmholtz FMM works 
fundamentally the same as the Laplace FMM in 
that it combines expansions valid inside the orig- 
inal groups to form expansions valid inside cor- 
respondingly larger groups with a bigger group 
radius. This recursive regrouping results in a 
tree-like structure that has groups of different 
sizes at different levels of the tree, h- or j- 
expansions valid for groups at one level must be 
combined to form expansions valid for either 
larger or smaller groups at a different level. 
More specifically, h-expansions from neighbor- 
ing groups are translated and combined into a 
single h-expansion representing a larger group 
when going up the tree, and j-expansions in a 
large group are translated to smaller groups go- 
ing down the tree. Let's look at these two oper- 
ations in more detail. 

When combining smaller groups into a larger 
group, the number of coefficients in the h- 
expansions representing each of tht smaller 
groups must increase to preserve the accuracy of 
the source expansion after the coefficients are 
translated and combined at the new (larger) 
group center. This is a consequence of translat- 
ing the h-expansions to origins that are further 
away than what was allowed by the number of 
terms in the original expansions. In terms of 
mulripole coefficients, this operation is handled 
by adding higher-order coefficients, initially 
zero, and then translating the expansion. The 
translation mixes the mulripole coefficients so 
that the higher modes are nonzero after the 
translation. This new expansion can be com- 
bined with others being shifted to the same 
group center by simply adding their coefficients 
term by term. The problem with implementing 
this procedure is that the translation operator 
must be applied in the diagonal far-field repre- 
sentation, not the mulripole coefficient repre- 
sentation, for the reasons we described in the 
previous section. In the far-field basis, the addi- 
tion of higher-order mulripole terms that are 
zero amounts to an interpolation of the function 
ß(*e, **) onto a denser set of far-field directions 
(V. V)- This interpolation must not introduce 
spurious high-order mulripole terms; otherwise, 
the algorithm's accuracy is quickly compromised. 

A similar problem exists when translating the 
j-expansions of larger groups to the centers of 
smaller groups, a procedure that is required 
when going down the tree. Because a smaller 

number of mulripole terms are needed to rep- 
resent the field inside a smaller group, the num- 
ber of terms in the mulripole expansion can be 
decreased with no loss of accuraq*. In the far- 
field representation, this procedure amounts to 
filtering the function a(kB, k^) to a less dense set 
of far-field directions (k9, kt). But, just as in the 
interpolation step described above, the filtering 
operation must remove only the higher-order 
mulripole coefficients; otherwise, the accuracy 
is similarly compromised. 

The implementation of fast, efficient interpo- 
lation or filtering operations is straightforward 
in principle. Because the translation operators 
are diagonal in the far-field basis, all FMM im- 
plementations keep the h- and j-expansions ex- 
clusively in the far-field representation. The in- 
terpolation and filtering steps, however, are 
rigorously defined only in a mulripole coeffi- 
cient basis. 

Consider interpolating an h-expansion given 
by a set of coefficients in the far-field represen- 
tation ß(8, 0). The mulripole coefficients are 
given by this far-field transform: 

ßlm=jj(c0ske)Pr{c0ske)fjke-mk°ß(k9,k9) 

= fj{coske)Pr(coskg)Pm{k9). 
J (1/) 

We have left out phase and normalization fac- 
tors in Equation 17. Because filtering or inter- 
polation always involves a transform-inverse 
pair, we consider these factors as being absorbed 
into the definition of the mulripole coefficients. 
Assuming a uniform distribution of points in the 
k^ direction on the unit sphere, a fast Fourier 
transform (FFT) can easily and efficiently com- 
pute ßm(*9). 

Numerical quadrature handles the remaining 
part of the transform: 

Ä, = i^^m(cos^)^(^)i (18) 
n = l 

where wn and k&, are sets of weights and abscis- 
sas for an appropriately defined quadrature rule. 
Interpolation onto the denser set of points is 
then handled by the inverse transform 

/^V.V)-Z^Z/wr(co««)f 
OT»-Z.' /=0 

(19) 

where U > L, the far-field directions (ke', k^ are 
now a correspondingly denser set of points on 
the unit sphere, and all the ßfe corresponding to 
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/ > L are zero. The filtering step happens in ex- 
actly the same way, except that U < L and the 
coefficients corresponding to / > L' are simply 
truncated. In both cases, an FFT can handle the 
sum on m straightforwardly. 

The filtering.and interpolating steps will 
quickly create a serious computational bottle- 
neck and break the scaling of the entire algo- 
rithm if not treated properly. Indeed, the pri- 
mary obstacle to constructing a practical 
multilevel FMM has been proper handling of 
these steps. 

For this problem, the best solution—desirable 
because it is exact—is to construct a fast associ- 
ated Legendre transform.11-12 When combined 
with an FFT of the $ directions on the unit 
sphere, this approach results in an operation 
count that scales no worse than 0(12 log L), 
where I is the order of the spherical harmonic 
expansion at a given level. This method works 
in principle but suffers from a large crossover 
point compared to the "semifast" transform, 
which also uses the FFT in the kt direction but 
uses a slow transform in the kB direction, and 
which scales as I3. Unfortunately, this crossover 
point is squarely in the region encountered by 
problems of large but practical size. Recent work 
has improved this crossover point somewhat,12 

and we are using the improved algorithm for 
higher levels of the multilevel FMM, which 
we'll describe next. 

Implementation 

Our multilevel FMM implementation consists 
of two main routines: setup and apply. 
Setup produces a tree or hierarchy of groups 
that partition the sources. It uses this tree to pre- 
compute the translation operators and other 
quantities. Using information computed by 
setup, apply forms Z • 2, the value of the field 
at every source caused by all other sources. 

Setup 

To construct the tree, setup performs the 
grouping on a cubic lattice where each box edge 
has the length DI V3 (see Figure 1). The group 
diameter D is picked to minimize the overall op- 
eration count and typically ranges from 0.5 to 
1.5 wavelengths. At the lowest level (level 0), the 
routine assigns each elementary source to the 
box with the closest center. With this base 
grouping, the grouping process moves on to 
subsequent levels. At each level /, the size of the 
boxes doubles, so each box contains up to eight 

Figure 1. Multilevel FMM grouping. The small box A interacts with 
the dark shaded region, using the level-0 translation operators. At 
the next higher level, the medium box B interacts with the medium 
shaded region, and so on for the large box C. In general, for a low- 
accuracy solution (£, ~ A,, D,), a box interacts with 27 other boxes 
(in 3D) through translation operators. The eight small boxes clos- 
est to A are handled directly. 

active subboxes. However, because a surface is 
generally being discrerized, the number of ac- 
tive subboxes is usually closer to four. This 
grouping process continues until all the sources 
fit in one box. The quantity if is set to the num- 
ber of levels or height of the tree, and the top- 
most level is if- 1. The set of groups at a given 
level is denoted groups(l). 

The translation operators at each level will 
have the same number of terms L, and far-field 
directions K/ because the box sizes are the same. 
The number of terms at each level is given by 
an empirical fit,3 

L, = koD, +—IogfoD/ +«), (20) 

where d is the desired number of digits and k0 is 
the wave number (and should not be confused 
with the far-field directions). If necessary, 
setup increases the number of terms at a level 
until that number is a product of small primes. 
This makes the discrete Fourier transforms in 
the interpolation and filter steps fast. 

For each group, setup constructs two lists: 
nearby and far. For the top group, the nearby list 
contains itself and the far list is empty. The rou- 
tine then starts at level / = H- 2 and works down 
to /=0. For each group m e groupsQ), it considers 
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tree, and the inverse shifting-and-filtering step for movirx 
the tree. 
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wn 

all groups m' that are subgroups of grov in the 
near list of the parent group of m. If ■ is far 
from m—that is, k^X^^ > L/,—setu p :ces m 
on fatim); otherwise, it places m' >r .mm). 
(X^. = XVI-Xm. where X„ is thv . :uer of 
group m and X„- is the center of gr .ip V.) 
Once setup has constructed the r-ar -.mi! far 
lists for every group in the tree, it tr incites the 
tree (His reduced) so that the topmost. jvel has 
a reasonable number of far interaction: .o com- 
pute (in the full tree, groups in the top;iost lev- 
els are near each other). Given the (tr :.cated) 
tree with the near and far lists, setup i—- pre- 
compute all the translation operators and other 
needed quantities, and the routine is complete. 

Apply 
To form Z ■ I—that is, to apply the multilevel 

FMM operator to the source vector.—apply 
follows this procedure: 

1. Local to fan It computes a representation of 
the field external to a group caused by the 
sources in the group. For m e groups(0), 

>mk -I aesoureesim) 
Mx.-x.)j 

2. 

where a is a source in group m, x„ is its lo- 
cation, la is its strength, and k= k^k is a far- 
field direction (kg, k^). This shifts each 
source to its group's center, where its field 
is accumulated with that of all other sources 
in the group. 
Ltvel-0 translation: For m e groups(0), it 
computes gmk = !„• e fMm) T^-^i, where 
Tmm-k = ß(k& *«) is a level-0 translation op- 
erator as given in Equation 15, with xl2 = 

I l*-mm I • 

Uptree and translation: Working from level / 
= 1 to / = H- 1, apply first computes the 

field at the center of each level / group 
caused by its subgroups, and then translates 
this field to faraway groups and accumulates 
the fields from subgroups. Specifically, for 
each subgroup m' of m, it computes /m> = 
interpolate(smk) and then shifts: 

'mi = S mi +
 e*.(x.-x.-)x: 

The interpolate step takes the external rep- 
resentation of the m group (smk) and con- 
verts it into a representation /„■> valid for 
its parent group m, as we discussed in the 
previous section (see Equation 19). Apply 
then shifts the field s'„-k to the center of 
group m and sums that field with the con- 
tributions from the other subgroups, 
thereby forming an external representation 
of the field caused by all the sources in m. 
Figure 2 depicts this interpolation and shift- 
ing. The quantities s^ correspond to the 
far-field representation of the ßs in the pre- 
vious section. Once apply has performed 
all the interpolation and shift steps at the 
level, it translates the fields, gmk = t„. e fMm^ 
Tmm-i, sm'k for m e groups(l), using translation 
operators for level /. The quantities gmk are 
the far-field representation of the as. 
Downtree: Working from level / = H - 1 to / 
= 1, apply shifts the field from each group 
at level / to its subgroups and converts it to 
the subgroup representation. Specifically, 
for m e groups(l) and m' a subgroup of m, it 
shifts 

'   _ *-(x„-xj 
Smk      " Smi 

and then filters: g„<k =filter(g'mk) (see Fig- 
ure 2). 
Far to local: Each lowest-level group now 
has the field caused by all far-away groups. 
Apply computes the effect on each point 
in each group: 

for m e groups(0) and a e sources(m), where 
wk is the quadrature weight for the sphere 
rule. This corresponds to the integral over 
the far-field directions in Equation 16. The 
routine forms the quadrature weights from 
the product of a Gauss Legendre quadra- 
ture rule (with LQ abscissas) in the 9 (polar) 
angle and a trapezoidal rule (with 2L0 ab- 
scissas) in the 0 (azimuthal) angle. 
Direct: Apply directly computes the lowest- 
level interactions that are too close for 
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FMM: 5, = Ba +1,. „„^ G(x,, v) /„. for 
m e groapj(0) and m' e nearim). 

The result is 5 with the accuracy specified by 
the translation operators. 

Time complexity 

Consider a uniform discretization of a simple 
convex shape, such as a sphere, having N points. 
The number of groups at the lowest level is M0 

« N/D0 . Let D0 be one so that the groups are 
roughly the size of a wavelength; then M0 = 0(N). 
For a low-accuracy solution, the number of terms 
at level / is I, ~ koD,=k0 ll. The branching factor 
of the FMM tree for a surface is four, so the num- 
ber of groups at a level is Mt = 4WM0. The total 
number of levels, H, is then given by M0 = 4H~I, 
assuming a full tree. For H> 2, we have H = 1 + 
log4 M0 and thus H = O(log N). 

So, the rimes for the steps in apply are as 
follows: 

• Local to far. T,f=N2 L0
2 = 2k0

2N = 0(N) 
because the number of far-field directions 
at a level is Ki = 21,2. The time for far to lo- 
cal is the same. 

• Translation: a group interacts with 27 far- 
away groups (see Figure 1), which gives 

H-l 

Tt = £27M,ZLJ = 54M0kjI*H = OlNlogN). 
i-o 

(21) 

• Downtree: To filter a single group from level 
/ to / - 1 requires L, FFTs of length 2Lh L,.x 

FFTs of length 2L,_U and 2L/_, ID FMMs 
of length Lj. Recalling that each parent 
group must filter down to four subgroups, 
summing over all the levels gives 

H-\ 
7"j = £ ^M,{c,L,2L, log 21, + Cf 2L^L, log L, + 

M 
fjZ.M2i/-ilog2L/-i) (22) 

H-\ 
= SM0k

2Ll^(ca(l + log2k0L0) + 

(r,/2 + ,,/4)(/ + log*0A,)) 

(23) 

Td=0(Nlog2N), (24) 

where ca and cp are the proportionality con- 
stants for the FFT and ID FMM. The ef- 
fort in shifting is negligible. Uprree has the 
same order of complexity. 

• Direct: Each lowest-level group has eight 

nearby groups where interactions must be 
handled directly (see Figure 1). So, each 
source has a fixed amount of work in the di- 
rect interaction that does not grow with 
problem size, giving a complexity of 0(N). 

Therefore, the overall scaling for the multi- 
level FMM is OiNlog2 N). For higher-accuracy 
solutions, L0 increases, but L, < 2' LQ for / > 0, so 
the 0(N log2 N) scaling is an upper bound for 
any reasonable accuracy. 

Memory 

The memory required scales as 0(N log N). 
A variety of techniques can lower the prefactor. 
First, because of the grouping, at a given level 
only a few discrete distances and orientations re- 
quire translation operators. It pays to keep a 
cache of translation operators indexed by level, 
group separation {Xmm), and the cosines that the 
group separator makes with two far-field direc- 
tions, <£*m- ■ h) and (X^,. ■ k2). Before setup 
computes a translation operator, it searches the 
cache to see if the operator has been previously 
computed. This results in a substantial com- 
pression of the operator, as we'll show in the 
next section. 

Each level has only eight distinct sets of shift 
coefficients, which can be precomputed and 
stored. However, the lowest level, where individ- 
ual sources are shifted to group centers and back 
(Steps 1 and 5), has as many coefficients as there 
are sources times the number of far-field direc- 
tions. Precomputing these coefficients is unnec- 
essary because they are simple exponentials. In- 
stead, the coefficients can be computed as needed, 
once per apply. The cost of doing this can be 
amortized over several simultaneous operator ap- 
plications. This corresponds to solving for multi- 
ple right-hand sides using a blocked iterative 
solver, which is a common practice. Similarly, the 
kernel evaluations for the direct interactions (Step 
6) can be computed as needed to save memory. 

Results 

We implemented apply in C++ and ran it on 
an IBM RS6000/590 workstation. We used the 
highly optimized FFTW package for discrete 
Fourier transforms13 and ID FFM routines for 
filtering.11'12 Table 1 shows the apply time per 
right-hand side and the memory requirements 
for spheres of increasing sizes and selected ac- 
curacies discretized by picking points randomly 
on the surface. Figure 3 plots the times with 
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Table 1. Runtime and memory requirements for apply, for various problem sizes and accuracies. 

Time (seconds) 

for different accuracies Memory use(bytes) 

Points Area A2 2 3 4 for two-digit accuracy 

314 1.26x10* 8.30x10*' 1.29x10° 1.53x10° 1.4x10* 

2,827 1.13x103 2.17x10° 3.17x10° 4.51x10° 1.7xl07 

7,853 3.14x103 8.49x10° 1.21 xlO' 1.59x10' 4.9 xlO7 

15,393 6.16x103 2.11 x10' 2.88x10' 3.74x10' 1.0x10" 

31,415 1.26x10" 4.58x10' 6.24x10' 8.07x10' 2.1 xlO8 

70,685 2.83x10" 1.28 xlO2 1.69 xlO2 2.11 xlO2 4.9x10" 

125,663 5.03x10" 2.40 xlO2 3.19 x102 3.93 x102 8.6x10" 
196,349 7.85x10" 3.92 xlO2 — — 1.4x10' 

least-squares fits to the time complexity. For the 
two-digits case, the fit is 

7TN)=1.36xlO"5iVlog;!Ar. (25) 

The point at which apply starts to perform 
faster than a dense-operator application is ap- 
proximately 25,000 unknowns. This assumes a 
sustained floating-point rate of 100 Mnv>ps per 
second and no penalty for using the out-of-core 
techniques required to handle extremely large 
matrices. Table 2 shows the times for each algo- 
rithm step for the 31,415-unknowns problem. 

We measured the effect of the translation op- 
erator cache, for the 196,349-unknowns prob- 
lem at two-digit accuracy. On average, each 
level-0 translation operator is used 3,512 times; 
each level-1 operator is used 1,056 rimes; each 
level-2 operator is used 290 times; each level-3 
operator is used 77 times; and each level-4 op- 
erator is used 14 times. The lowest levels use 
each operator many times because group pairs 
have many opportunities to be in the same rela- 
tive orientation and distance. Higher levels have 
fewer groups and hence less potential for reuse. 

Overall, the multilevel FMM memory re- 
quirements are dramatically less than that re- 
quired by a dense matrix. For the 196,349- 
unknowns problem at two-digits accuracy, the 
FMM requires approximately 1.4 Gbytes, com- 
pared with the 616 Gbytes for a dense matrix 
(assuming double precision). This represents a 
savings of more than a factor of 400. 

The algorithm we've described can be 
used to compute acoustic scattering 
with Dirichlet boundary conditions 
using a point-based, or Nyström, dis- 

cretization.14 The only additions required are that 
the far-to-local step must incorporate the Ny- 
ström quadrature weights and that the kernel val- 
ues in the direct computation must be corrected 
by an appropriate scheme to accurately treat the 
kernel's singular nature. Many other important 
issues exist, such as the choice of integral- 
equation formulation, appropriate discretizations. 
and the iterative solver and preconditioner. But 
these are all independent of the FMM. 

An extension to electromagnetic scattering or 
using a patch-based (Galerkin) discretization can 
be copied right from the single-level scheme" 
because the multilevel translation-operator ma- 
chinery is independent of boundary conditions 
and discretizations. ♦ 
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Ltn        7     af,a^'f^for translating far-field expansions to use in 
lou-freauencyfas, mulnpole methods. Their approach combines evanescent and 

propagattng plane „aves to reduce the computational cost ofFMM implemenZL 

Many problems in acoustics, microwave fil- 
ter design, interconnect modeling, and 
electromagnetic scattering require the 
solution of the Helmholtz equation (see 

Figure 1). To simplify the ensuing discussion, we limit 
our attention to the discrete .V-body problem (see Fig- 
ure 1, Equation 4). The numerical difficulty here Is 
clear; direct calculation of the sums in Equation 4 at 
each point requires 0(N2) work, rendering large-scale 
calculations impractical. To overcome this obstacle fast 
multipole methods have been developed over the last 
decade that reduce the operation count to 0(N) for co 

TJ/L
0
^

qUCnCy scatterinS) and OCVlog N) for co = 
W (high-frequency scattering).'"9 Still, in the 3D case 
the constant implicit in the 0(N) notation is quite large' 
especially for high precision in the low-frequency 
regime. } 

We present the analytic foundations for a new version 
of the fast multipole method for the scalar Helmholtz 
equation in the low-frequency regime. The computa- 
tional cost of existing FMM implementations, is domi- 

nated by the expense of translating far-field partial wave 
expansions to local ones, requiring 189/ or 189o3 oper- 
ations per box, where harmonics up to order p2 have been 
retained By developing a new expansion in plane waves 
we can diagonalize these translation operators. The new 
low-frequency FMM (LF-FMM) requires 40p2 + 6/>3 op- 
erations per box. v 

v^Z *" "7 LF"FMM> we generalize a version of the 
FMM recentiy developed'^> for the Laplace equation 
(co = 0), which replaces the classical multipole expansion 
with a representation in terms of evanescent plane waves 
to diagonalize certain translation operators. It bears some 
resemblance to the FMM for the Helmholtz equation 
Vladimir Rokhlin developed,1"3 which uses an expansion 
m terms of propagating plane waves to diagonalize trans- 
lation operators. The latter method, which we will refer 
to as the high-frequency FMM (HF-FMM), is numeri- 
cally unstable at subwavelength spatial scales. The LF- 
*MM we present uses a combination of evanescent and 
propagaong modes and blends the FMM and HF-FMM 
together seamlessly. 
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AO + üT<D = /inQcR3 (1) 

— + aQ> = g on dO., 
on (2) 

/d<J>     .   _\ 
r\- 7üXP) -> 0 as r -» oo 

(3) 
where ß is an exterior domain and dfl is its 
boundary. In applying integral-equation methods 
to Equations 1 and 2, we must repeatedly evalu- 
ate sums of the form 

Because we will always be working with Hankel 
functions of the first kind, we will use h„{r) as 
abbreviation of kr

a\r). In particular. 
an 

b0«a-) = - 
tea- 

s'      „"T'*""'!! 
<«**)= !?;¥ 1 

/=>      x*_x; 
* = 1,...,A\ 

(4) 

Theorem 1: multipole expansion 

Suppose that 7 sources of strengths [qr ; = 1, 
...,J\ are located at the points {x, = (pr a,, /?,), j 
= 1,..., J], with I pj■ I < a. Then for any x = (;\ 6, 0) 
€ R with ?• > a, the potential 

where the points x* are in R3, because e™/r is the 
free space Green's function for the Helmholtz 
equation satisfying the Sommerfeld radiation 
condition (Equation 3). 

<D( 
1       'Hlx-X; x) = 2>,{ ; 
7=1       F ~ X 

Figure 1. Solving the Helmholtz equation. 

The multipole expansion 

We now briefly define the multipole (or partial- 
wave) expansion due to a collection of point 
sources and describe some of its properties.12"14 

We will need a variety of special functions, 
whose definitions we collect here. 

Definition 1 

P„(x) denotes the Legendre polynomial of de- 
gree n, and P™(x) denotes the associated Le- 
gendre function of degree 77 and order m. Using 
the Rodrigues formula, 

P,T(x) = (-1)'"(1 - xl)"-'2 — PK(x) ■ 
dxm    " 

is given by 

4>(X) = 47ra*£   tw Ma*»'?&,<!>),       (6) 
n=0 m=-n 

where 
J 

(7) 

Furthermore, for any/> > an, 

-oft'.®) 

The spherical harmonic of degree n and ord 
m is denoted bv 

er 

'■■-<w>^^*w~-e> 

We define the spherical Bessel and Hankel func- 
tions^'-), h„(l-\r) in terms of the usual Bessel 
and Hankel functions via 

Note that for Theorem 1, CM is a measure of 
the radius of the enclosing sphere in terms of 
wavelengths. Thus, according to Equation 8, the 
multipole expansion does not begin to converge 
until the number of terms in the expansion pis 
of the same order as the number of wavelengths 
m the (smallest) enclosing sphere. Once enough 
terms are present, the error decay is quite rapid. 
Because we are interested in the low-frequency 
regime, we will assume that the first condition 
is always satisfied. If we now suppose that r=2a 
in the context of Theorem I, then Equation 8 
implies that 

*M-i iM7K(ar)r?m) 
w=Om=-77 

= 0(7)', (9) 

and setting/) = log2(l/e) yields a precision e. 
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Figure 2. The 
+z list for the 
boxB. 

1 
1 
1 
1 

  

While an Ar log N algorithm can be con- 
structed for the TV-body problem based on only 
the preceding theorem, it performs poorly in 
3D. The FMM relies on a more complex analy- 
sis and uses several translation operators. Be- 
cause the details of such a scheme have been 
fully described many times,5'6,10'15 we will not 
repeat them here. Instead, we will concentrate 
on the one translation operator whose cost is 
dominant in existing FMM implementations. 

Theorem 2: multipole-to-local conversion 
Suppose that 7 sources of strengths qhq2,..., 

qj are located inside a sphere of radius a with the 
center at the origin. Suppose also that Q = (p,a, 
ß), and that p>(c+l)a with c > 1. Then the mul- 
tipole expansion (Equation 6) converges inside 
the sphere DQ of radius a centered at Q. Inside 
DQ, the potential due to the charges qh q2, ..., 
qj is described by a local expansion: 

p> (Oa, 

l=Ok=-l 
■     ÖD 

*W = ni*i;(<»-T/(ö',f) 
(10) 

where (r, ff, <p') are the coordinates of x with 
respect to the center Q. Furthermore, for any 

For Theorem 2, the matrix that converts the 
multipole coefficients {M%} into the local coef- 
ficients {!,*} is rather complicated,5'16 and we 
omit it. We simply observe here that the matrix 
is dense, so applying it to a truncated expansion 
with 0(p2) harmonics requires 0(/>4) work. 

Although, as indicated above, we will not de- 
scribe the full 3D fast multipole algorithm, it is 
based on a hierarchical subdivision of space. For 
this, we assume that all sources are contained in 
a box of side length D, which we refer to as 
refinement level 0. We obtain refinement level / 
+ 1 recursively from level /by subdividing each 
box into eight equal parts. This yields a natural 
tree structure, where the eight boxes at level /+ 1 
obtained by subdividing a box at level / are con- 
sidered its children. Below we define boxes at the 
same refinement level (Definitions 2 and 3) as 
well as the interaction list associated with each 
box (Definition 4). 

+z list 
-z list 
+ylist 
-K list 
+x list 
-x list 

Separated by at least one box in the +z direction 
Separated by at least one box in the -z direction 

Separated by at least one box in the +v direction and not contained in the +z or -z lists 
Separated by at least one box in the -y direction and not contained in the +z or -z lists 
Separated by at least one box in the +x direction and not contained in the +z, -z, +y or -y lists 
Separated by at least one box in the -x direction and not contained in the +z, -z +y or -y isU 
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• Definition 2. Two boxes are said to be near 
neighbors if they are at the same refinement 
level and share a boundary* point (a box is a 
near neighbor of itself). 

• Definitions S. Two boxes are said to be well 
separated if they are at the same refinement 
level and are not near neighbors. 

• Definition 4. With each box / is associated 
an interaction list, consisting of the children 
of the near neighbors of ;'s parent which 
are well separated from box i. 

A simple counting argument shows that the 
interaction list contains up to 189 boxes. In the 
FAIAl, the most expensive step is convening the 
multipole expansion for each box into the" 189 
different local expansions that the boxes in its 
interaction list require. If there are M boxes in 
the hierarchy, then this requires 0(\89p4M) 
work. 

Diagonal form of translation 
operators 

The new generation of FMMs is based on com- 
bining multipole expansions with exponential or 
plane-wave expansions. A complicating feature 
of this approach, however, is that we need six 
different expansions for each box, one emanat- 
ing from each face of the cube. The interaction 
list for each box is subdivided into six lists, one 
associated with each direction. Figure 2 shows 
the +z list for the box B, and Table 1 explains the 
six lists for the interaction list. After reviewing 
Table 1, it is easy to verify that the original in- 
teraction list is equal to die union of the +z, -z, 
+y, -v, +x, and -x lists. 

The starting point for our analysis is the in- 
tegral representationrepresentation 

VA" -to' 

-dadX 

(12) 

which is valid for z > 0. It is straightforward to 
derive from the 3D Fourier transform of the 
kernel e'mlr, followed by contour integration. 
We need the restriction z > 0 for the contour in- 
tegral to be well-defined.14 The 2D formula is 
given in the "2D Fourier transform" sidebar. 

Note that, for 0 < A < co, the modes propagate 
without attenuation, while for co < X < «>, they 
decay. We refer to the first region as the propa- 
gating part of the spectrum and the second as 

V   r   'prop     23th h --— dad). 

= j^_ r'-^.^coss.r- 
2m h Jo 

.itttsinH' xcosa-v 
"JasmOJe 

(13) 

Figure 3. For the propagating part of the spectrum, we change 
variables A=w sin 0 (Equation 13). 

--r 
In h 

\ /.--or; r-" 
Jo 

Jo 

'dadk 
\/r 

■£J" ucosa-vsma dado 

'     f"   -<r , ">        1        1       i - -^j0 
e   './o<\<x-+ar vt-+y- Mr 

(14) 

Figure 4. For the evanescent part of the spectrum, we change vari- 
ables c2 = A2 - of (Equation 14). 

the roanescent part. For the propagating part, we 
change variables A = co sin 0(see Figure 3 for the 
resulting equation). For the evanescent part, we 
change variables cr = A2 - or (see Figure 4 for 
the resulting equation). 

In Equation 12, as co -> 0, the propagating pan 
disappears, leaving only the evanescent spectrum. 
This is the integral representation for Mr used in 

2D Fourier transform 
In 2D, the analog of Equation 12 (see the main text) is 

H0(OJr) = ± dX 

(23) 

which is valid for y>0. 

The propagating part, as above, covers the range |A| < co. Using 
the change of variables A = w cos ©yields 

(24) 

For the evanescent part, we make the change of variables o2 = 
A2 - w2, so that 

(W0(fflr)) evQneseent 
--L f~ L 

TO J— 

-ay  iVff2Wi 

da 

(25) 
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the FA1M—hence our assertion 
that we have a seamless transition 
to the zero frequency case. 

The next problem we face is that 
of discretization. The integrand 
for the propagating part is smooth, 
and we achieve high-order accu- 
racy via Gaussian quadrature in the 
8 direction and the trapezoidal rule 
in the a direction. The evanescent 
part is more complicated. The in- 
ner integral, with respect to a. is 
easily handled by the trapezoidal 
rule (which achieves spectral accu- 
racy for periodic functions), but 
the outer integral requires more 
care. We use generalized Gaussian 
quadrature rules,1" designed with 
the geometry- of the interaction list 
in mind. We present our analysis 
in the "Discretization" sidebar. 

Incorporation into LF-FMM 

Consider now the interaction 
list for a box B in the context of a 
fast multipole code, for which we 
need 189p4 operations with the 
naive multipole-to-local transla- 
tion operator, and 189p3 opera- 
tions using rotation matrices.10 

Using the analysis outlined in the 
"Discretization" sidebar, we can 
generate six outgoing exponential 
expansions at a cost of 6p:" work 
and translate them all at a cost of 
189/r work. Once a box has re- 
ceived the incoming exponential 
expansions from all directions, it 
can convert them to a single local 
expansion, using an additional 6p' 
operations. Thus, the total work 
scales like Up' + 189p2 operations 
per box. Further symmetry con- 
siderations reduce this to 6/>3 + 
40/r operations.10 

Discretization 

Because of the restriction that z > 0, we assume, for the moment, 

that a source Q = (x0/ y0, z0) is contained in a box ß and that a target 

P = (x, y, z) lies in a box C s + z - list(B). To fix spatial scales, we as- 

sume that ß and C have unit volume and that they are separated in 

the z-direction by one or two unit distances. We then have the fol- 
lowing result.1 

Lemma 1: plane wave representation 

Let r>Q denote the distance from Qe BtoPe Ce +z- list(B), and 

let {6h ...,eN] and [v, vN] be the nodes and weights for N-point 

Gauss-Legendre quadrature on the interval [0,n/2\. Then there exist 
weightsn,, ...,^ nodes er,, ..., er„ and integers M(7), ..., M(s), so 
that 

r?Q      t   iN   £ 
«u-cosStC-^H-smSj ii-x0icosa,»(>->(,isina, 

yJfLy -°*l;-^)l+'Y<',--(B:[ii-i0icoso.*(v-v0isincrJ 

(15) 

for 0 < co rPQ < 10, where a, = 2xj/M(k). The total number of expo- 
nentials required, which we denote by Sexp/ satisfies 

Norman Yarvin and Vladimir Rokhlin supply us with the weights 
and nodes //,• and er, for the evanescent modes.2 For six-digit 

accuracy, the total number of modes we require is approximately 

600—150 for the propagating spectrum and 450 for the evanescent 

spectrum. Ten-digit accuracy requires 1,500 modes—300 for the 

propagating spectrum and 1,200 for the evanescent spectrum. (The 

FMM for the Laplace equation requires 280 modes at six-digit accu- 
racy and 900 modes at 10-digit accuracy.) 

Corollary 1 

Let ß be a box of unit volume centered at the origin containing L 
sources of strengths {qk I = 1,...,L), located at the points {Q} = (*,, Yu 

*/), / = 1,...,L). Then for any P contained in +z - fef(ß), the potential 
<HP) satisfies 

*     K 

i e > i 

Significant implementation  
work remains, including 
the coupling of this LF-FMM with an 
HF-FMM, once the dimensions of a box 

are on the order of a wavelength. Current HF- 
FMM implementations have been able to inves- 
tigate structures that are many wavelengths 

<Ae 

(16) 

across, but only those with smooth surfaces. A 
hybrid code will be able to include subwave- 
length mesh refinement and will greatly enhance 
the range of future simulation efforts. ♦ 
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Multipole Rep. Local Rep. 

wherey4 = XS., \q,\, 

WF(k j) — ^l Sln"t V*        igcaBtzl  -iiosinBi casg.i,   -ie>aneliinaJy 

iW 

and 

WE(k,j) = -^Ye°"e-' yaj-Ko- cosa^j,   -lyajW sma;>, 

(17) 

(18) 

Corollary 2: Diagonal translation 

Let ß be a box of unit volume centered at the origin 

containing N charges of strengths {qv I = 7,..., L), located at 

the points {Q, = (^ y,, z,), = 7,..., 1} and let C be a box in + z- 

list(B) centered at (x0 ya zj. For P e C, let the potential <P(P) 

be approximated by the exponential expansion centered at 
the origin 

N    N 

+ £ £w£(t,y)e-
<T';e

,^+'"2'cosv«'"''J» + 0(£) 

•(19) 

Then 

*(P) = CuV V V'Vifc j\e-
,acos8k(z-^>e

,af{''ek(c<*<>jtj-xcHsma1ir-yc)) 

k=\ ;=l 

i   M(ti r-^ _ 

+V V y£(]cj)e-<'l,(z-^)e
li''i+al<"*<',(i-ie)+imat{r-ye)) 

+«e) (20) 

where 

VP(k,j)=Wl'(k  ;\f.-
,fflcosei^e''l,sin**cosa>-tc   KosinSjcosa^.v, 

and 

VE(k,j) = WE(k,i)e~Cil< e^"**"' ""V«--'V'■""" s"io;! 

(21) 

•    (22) 

Equations 21 and 22 are, in some sense, the centerpiece of 

the new scheme. They show that p2 degrees of freedom de- 

scribing the far field due to sources in a box B can be trans- 

mitted to a box Cin its interaction list using p2 operations. In 

other words, in a plane-wave expansion, translation is equiva- 
lent to multiplication (see Figure A). 
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Figure A. In the new FMM, we can replace a large 

number of multipole-to-local translations—costing 0(j>*) 
or 0(p4) work—with a large number of exponential 

translations, costing 0(p*) work. 

In an actual FMM implementation, we will be given the 

multipole expansion for a box B rather than the source distri- 

bution itself, so we will need to convert it to an exponential 

expansion. Moreover, after translating an exponential expan- 

sion, we must convert it to a local harmonic expansion of the 

form (see- Equation 10 in the main text). The formulae are 

rather complex, and we avoid going into detail.2 Here, we 

simply observe that 0(p3) = 0(log3 e) work is required for 
each step. 

Up to this point, we have considered only the exponential 

expansion needed for the +z list. To obtain expansions appro- 

priate for each of the other five lists, we simply rotate the co- 

ordinate system so that the z axis points in the desired direc- 

tion. The cost of rotation also scales as CXp1). 
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A Scalable Multilevel Helmholtz FMM for the Origin 2000* 

Mark A. Stalzer1 

Abstract 
Presented is a parallel algorithm based on the multilevel fast multipole method 

(FMM) for the Helmholtz equation. This variant of the FMM is useful for electro- 
magnetic scattering calculations. The algorithm was implemented on an SGI Origin 
2000 using a threaded approach without explicit message passing. To achieve good 
scalability, steps in the FMM that intrinsically require inter-processor communications 
(applying far field translation operators) were modified to improve cache performance 
and minimize communications costs. 

1 Introduction 

This paper presents a scalable parallel version of the multilevel fast multipole method 
(FMM) for the Helmholtz equation: (V2 + k2)<& = p. This variant of the FMM is useful 
for computing scattering cross sections and antenna radiation patterns[2, 3, 5, 6]. This is 
in contrast to the FMM for the Laplace equation, V2\& = p, which is applicable to the N- 
body problem. A substantial amount of work has been done on parallelizing the (multilevel) 
Laplace FMM[4, 8, 10], and single-level Helmholtz FMM[7, 9]. The emphasis here is on a 
scalable parallel multilevel Helmholtz FMM. 

This paper is organized as follows. In the next section, the basics of the multilevel 
Helmholtz FMM are reviewed. In Section 3, the computation model is presented followed 
by the details of the parallel FMM implementation in Section 4. Scalability results are 
given in Section 5 followed by some concluding remarks. 

2 Fast Multipole Method 

A method of frequent choice for computing scattering cross sections and radiation patterns is 
to solve a matrix equation, Z-I = V, derived from the discretization of an integral equation. 
The number of unknowns N required for accurate modeling of such problems can be very 
large, which severely limits problem size. The system can be solved by factoring the dense 
matrix Z (an 0(N3) operation), or by using an iterative technique which requires 0(N2) 
operations per iteration. The 0(N2) operation in iterative solvers is the multiplication of 
an approximation / by the impedance matrix Z. In contrast, the FMM works by recursively 
decomposing Z into sparse components that can be applied in 0(Nlog2 N) time. 

The basic approach given here follows the paper by Gyure and Stalzer[5]. Consider 
two well-separated spheres of radius i?i and R2, each containing a collection of Helmholtz 
sources. The field due to an individual source is given by 

pikor 

(1) 6(r) = G(r) = -— 
k0r 
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where r is relative to the source and ko is the free space wavenumber. (Given a vector r. r 
is its magnitude and f is the corresponding unit vector.) We want to quickly evaluate the 
field generated by all the sources in R\ at every source in R2- This field can be written as 
a multipole expansion valid outside of Ri as 

(2) Uir) = J2ßimh,(kr)Ylm(0.0) 
lm 

where r,6, and <f> are relative to a coordinate system centered in Ri.hi(kr) are spherical 
Hankel functions of the first kind, and Ylm(Q, o) are normalized spherical harmonics. We'll 
refer to this expansion as an h-expansion. Similarly, we can write an expression for the 
field valid inside R2 : 

(3) ^) = ^lmJl(kr)Ylrn(e.<p) 
lm 

where the coordinate system is now centered in i?2, and ji(kr) are spherical Bessel functions. 
We'll refer to this expansion as a j-expansion. For the moment, we consider both of these 
to be infinite sums. The FMM then rests on three observations: 

• The origin of an h-expansion can be shifted arbitrarily inside Rx, and a new set of 
coefficients, ßirn, can be computed for this new expansion. The same holds for shifting 
a j-expansion arbitrarily to a new origin inside of R2, which results in a new set of 
coefficients, Q;m. 

An h-expansion valid outside of Ri can be translated and converted into a j-expansion 
valid inside R2, resulting in a new set of coefficients for the j-expansion, 7/m. 

Most crucial, these shifts and translations can be done efficiently by transforming the 
coefficients into a basis in which both operators are diagonal. 

The far field transform of an arbitrary function f(k) is 

(4) /M = E*'tfm(fc)//m 
lm 

and the inverse transform is given by 

(5) fim = Jdki-'Yl*m(k)f(k) 

where k is a unit vector represented by polar and azimuthal angular components: (kg, k^j. 
It is in this k-basis that the shift and translation operators are diagonal. An h-expansion 

in its far-field basis is shifted from a point x to another point x' both inside of Rx by 

(6) ß(k) = X(k,x'-x)ß(k) 

where A is given by 

(7) A(fc,x'-x) = eifc°*-(x'-x> 

The same shift operator A also applies to j-expansions. It represents a "local" shift in the 
group center, retaining the exterior or interior expansion. 

The translation of an h-expansion into a j-expansion is through the translation operator 
fj,, which, in the far-field basis is 

(8) M(£, x' - x) = £ il(2l + l)^(fc0|x' - x\)Pt(k • (x' - x)/|x' - x|) 

• 

• 



where the P[ are Legendre polynomials. 
In practice the expansions are truncated to a finite number of terms L depending on the 

group size and desired accuracy. The mathematical validity of this truncation is addressed 
by Rokhlin[6] but it is related to the fact that these series are asymptotic and are. therefore, 
of controllable accuracy. Empirically, it has been determined that the number of terms L 
needed in the expansions for a region of diameter D is [2] 

(9) L = k0D + YQ log(koD + n) 

where d is the desired number of digits. 
The above expressions for the translation operators, together with the far field 

transform, are the basic tools used to construct ä multilevel FMM algorithm. Clearly 
the field caused by a collection of sources inside an arbitrary group G\ can be evaluated at 
any point inside a second group G2 by converting the exterior h-expansion, valid outside 
Gi, to an interior j-expansion which is valid inside G2. Also, we can calculate the field 
at that point caused by the sources in G\ by computing ä0o, the leading term in the j- 
expansion. No other terms contribute, because the expansion is already centered at the 
field point where r = 0 and all the terms j/(0) are zero except for j0 which is one. Thus, 
we can evaluate the field directly through the far-field transform as 

(10) <j>(0) = äoo = -£= fdkä(k). 
v/47r J 

The abcissae k = (/c0, k^) of the numerical quadrature rule used to compute this integral 
are selected so that it can be performed exactly. One choice is to use a trapezoidal rule of 
2L points in the <b direction and an L point Gauss-Legendre rule in the 8 direction. This 
discretization of the k basis is used throughout the FMM. 

The multilevel Helmholtz FMM works in fundamentally the same way as the Laplace 
FMM in that it combines expansions valid inside the original groups to form expansions 
valid inside correspondingly larger groups with bigger group diameters. This recursive 
regrouping results in a tree-like structure that has groups of different sizes at different 
levels of the tree. The h-expansions from neighboring groups are shifted and combined into 
a single h-expansion representing a larger group when going up the tree, and j-expansions 
in a large group are converted to smaller groups going down the tree. The details of this 
process are given in the next section. 

There is, however, an important mathematical detail. When going up the tree, it is 
necessary to interpolate the far field representation of a group at one level onto the denser 
(k more closely spaced) basis of the group one level higher. Similarly, when going down the 
tree, it is necessary to convert to a sparser basis in a filtering process. In both cases, the 
code converts from the far field basis to the multipole coefficients and then back to the new 
far field basis using the definitions given in Equations 4 and 5. The actual implementation 
is in terms of fast Fourier transforms for the k^ direction, and fast associated Legendre 
transforms for the ke direction [11]. As a practical matter, a slow associated Legendre 
transform which is implemented in terms of matrix multiplication can be used on rather 
large problems because of the small prefactor in its time complexity relative to the fast 
transform. However, fetching the transform matrices from memory causes some scalability 
problems which are addressed in Section 4.2. The details of the filtering and interpolation 
processes are given in [5]. 



3    Computation Model 
The parallel FMM is implemented using threads assuming a cache-coherent distributed 
shared memory mechanism such as that on the Origin 2000. The O2000 is constructed as 
a collection of nodes interconnected by a hypercube. A node consists of two processors, 
each with two levels of cache, and a local memory that is shared by the processors directly 
and by all other nodes via the network. To achieve good scalability, it is essential that the 
caches be used effectively and that crucial data structures are placed in memories close to 
the processors that will use the structures. This placement is treated in Section 4.2 

The implementation rests on two abstractions: a Barrier and a Counter. These 
abstractions are implemented in terms of IRIX threads (SPROCS) for the O2000 or POSIX 
threads for other platforms. A Barrier B has the expected semantics: when a thread calls 
enter (B), it returns only after all other threads have called enter. 

A Counter is a thread-safe counter that has two primary routines: reset(C) and 
next(C,p) (increment), where C is a Counter and p is a thread number. Counter is used to 
loop over groups at each level in the FMM. The reset routine sets the counter to zero and 
acts as a barrier. The next method returns the next value of the counter. The basic usage 
is that all the threads initialize the counter to zero with reset and then enter a loop getting 
the next value of the counter until all the groups at a given level have been processed. 

There is one additional detail. At a given level in the FMM grouping there are a certain 
number of groups Mi. Assuming P threads, next for a thread p first returns values in the 
range Mip/P ... Mi(p + 1)/P- 1. These are the thread's groups for the level. Once a thread 
is done processing its groups, next begins to return values corresponding to groups the have 
not yet been processed by the other threads. When all work is complete, next returns a 
value > Mi and the computation moves on to the next step. The net effect is a sort of 
dynamic load balancing. This is easy with shared memory, but difficult to achieve with 
explicit message passing. Two final Counter routines are first(C.p) which returns Mip/P 
and last(C.p) which gives Mi(p + l)/P - 1. 

4    Parallel FMM 
A basic parallel FMM is presented next that is implemented in terms of the primitives 
defined above. The basic algorithm is then modified to improve scalability by explicitly 
placing data structures in memory and by ordering the use of the translation operators. 

4.1    Basic Algorithm 
There are two routines: setup which builds the data structures necessary for the FMM, and 
apply which computes the product Z ■ I. 

The setup routine works as follows. First, a tree of groups is constructed. The lowest 
level (/ = 0) groups contain elementary sources. Each higher level group at some level /, 
contains up to eight level / - 1 subgroups of one half the size. However, since a surface 
is being discretized, the typical number of subgroups is about four. The top of the tree 
consists of a single group which contains the entire scatterer. The quantity H is the height 
of the tree in levels, so that the topmost level is H - 1. Let groups(l) be the set of groups 
at level /, and Mi be the number of elements in this set. Denote the parent of a group m 
by mp. Finally, let Lt be the number of terms in the expansion at level / as determined by 
Equation 9. 

For each group m two sets (lists) are constructed, nearby(m) and far(m), based on 



the following conditions: 

(11) m' e nearby(m)   iff   fc0Xmrn/ < L;, 

(12) m! 6 far(m)    iff   m' £ nearby{m) and /c0Xmpm/ < I/+1 

where m and m' are members of groups(l), and Xmm/ is the vector between the group 
centers X and X'. In other words, a group is in the nearby list of m if it is too close to use 
the translation operators at that level. Otherwise, it is in the far list as long as the parents 
of m and m! are too close to use their translation operators. Interactions between sources 
are accounted for at the highest possible level. 

The construction of the tree is fast and is done by the main thread. The main thread 
then creates P apply threads where P is typically set to the number of processors available. 
These threads perform memory allocation and construct the translation operators p. as 
described in Section 4.2. Once the apply threads have finished initializing, the setup is 
complete, and the threads wait on a Barrier. 

When the iterative solver needs to compute B = Z ■ I (i.e. apply the operator), it 
releases the threads from the Barrier and they execute the steps listed below. The steps 
are written in terms of top level loops over groups using Counters. This naturally splits 
the work over threads and, hence, processors. This approach scales properly given good 
placement of data structures and care in applying translation operators. These issues are 
treated in more detail in the next sections. In what follows, the ß(k) quantities are denoted 
by s and the a(k) quantities are denoted by g. Loops are written in a C-style as for 
(initialization; test, update), or as for (i e set) where i is understood to sequentially take 
on all values of the set or range. Each thread p executes the following to carry out the 
FMM apply: 

Local-to-Far: The far field basis of each I = 0 group is constructed from its sources. There 
is no need to compute the multipole coefficients since it is a simple matter to compute 
the far-field directly from the sources. 

for (reset(C0);rn < M0;m — next(C0,p)) 
for {k£0...Ko-l) 

smk = 2~ia£sources(m) "M*"' -^-m — Xa)ima 

Note that at every level in the tree, there is a Counter Q controlling the iterations 
at that level. The number of far field directions at a level is Ki = 2Lf using the 
quadrature rule described Section 2. It should be clear that each value of an index 
k represents some k = {kg,^) in the discretized far field basis for that level. The 
sources of a I = 0 group m are sources(m), and the location of a source a is xQ. 

Uptree: The far fields due to each subgroup of a group are interpolated and shifted to the 
group's center and accumulated to form the far field basis of the parent group. 

for (l£l...H-l) 
for (reset(Ci)\m < Mi\m = next(Ct,p)) 

for  (m' € subgroups(m)) 
sm> = interpolate(sm') 
for (keO...Ki -1) 

Smk = Smfc + A(K, Xm — Xm»)sm'); 



Translate: For each group m, the far field of each far away group is translated to m. 
converted to a j-expansion, and accumulated. This gives the field due to all groups 
far from m as a j-expansion valid inside of m. 

for (/G0...J7-1) 
for {m E first(Ci.p).. .last(Ci.p)) 

for (m' G far(m)) 
for (k G 0..K, - 1) 

9mk = 9mk + n{k,Xm - Xm>)sm>k 

Downtree: The j-expansions are walked down the tree in a way analogous to Uptree. 
The code works downward from level H - 1. shifting the field gm of group m to its 
subgroups and then filtering (instead of interpolating). The parallel structure is just 
like Uptree. 

Far-to-Local: At the bottom of the tree, the j-expansions are used to evaluate the field at 
each source due to all far away sources. The procedure is the same as the Local-to-Far 
step except that k -* -k. At the end of this step, the result (B) has been computed 
for all far away interactions. 

Direct: To account for interactions between groups that are too close to each other to use 
the FMM, the Green function is used directly: 

for (reset(C0):m < M0\m = next{C0,p)) 
for  (m' G near(m)) 

for  (a G sources(m)) 

Oma = Hma + l^a'€sources(m') ^(Xa — xa')Ia' 

enter (apply -gate) 

G is the Helmholtz kernel as defined in Equation 1. The final step is for all of 
the treads to enter a barrier. This ensures that the calculation is complete before 
returning to the main thread. Jo 

This description of the parallel algorithm is very similar to its sequential counterpart. 
The only complications are operations on the Counters, which look like regular loops, 
and the Barriers. These similarities between the parallel and sequential algorithm make 
implementation and maintainability easier. 

This algorithm is' for scalar (acoustic with Dirichlet boundary conditions) scattering. 
For the vector case (electromagnetic), the work doubles because two field components must 
be kept for each source but the algorithm is otherwise straightforward. The results in 
Section 5 are for electromagnetic scattering. 

4.2    Memory Allocation and Placement 
To assist in placing data structures in memory, IRIX provides an interface called dplace. 
During initialization, dplace is instructed to reserve Pjl local memories in a cube 
architecture. When each thread p is created during the FMM setup phase, it instructs 
dplace to associate itself with memory p/2. The default memory allocation policy in IRIX 
is "first-touch," meaning that when a thread allocates memory, IRIX attempts to satisfy 
the request on the node containing the processor that is currently executing the thread. 
The net effect, is that all memory allocated by an apply thread will be local assuming that 
the allocations can fit in its node. 



In what follows, the phrase that a node allocates memory, indicates that one of the 
threads running on the node (like the even numbered thread), allocates the memory and 
then the other thread on the node aliases the allocation. This allows certain read-only data 
structures to be replicated across nodes but shared by the threads running on the node. 

After the memory model is set up using dplace, a set of filters for moving between 
the different levels in the tree are allocated on each node. The filters at the lower several 
levels of an FMM tree are based on moderate sized matrices. Without local niters, Uptree 
and Downtree do not scale properly because there is a bottleneck when all processors try 
to fetch the matrices out of a single node. Similarly, the shift operators A are replicated 
in each node since there are at most eight per level. (Except for the I = 0 shift operators, 
which are computed as needed.) 

Each thread allocates the field variables s and g for its groups as well as local thread 
temporary storage (and working storage for the FTT routines used by the filters). In 
addition, every thread allocates and computes its share of translation operators (fi) that 
are used by all threads. Replication of the translation operators is unfeasible due to their 
size. This will have implications which are treated in Section 4.3. 

The end result is that each node contains filters (and interpolators), shift operators, 
group field variables s and g, thread local storage, and a share of the translation operators. 
All of the other data structures required for the FMM, and there are many, are allocated 
without concern for placement because they are not performance critical. 

4.3    Application of Translation Operators 

Applying the translation operators in a scalable way is more problematic. Here the fields 
of all far away groups from a particular group are translated, converted to a j-expansion 
valid inside the group, and summed. It is likely that the field of a far away group will be 
in a remote node which makes this step highly cache sensitive. If naively implemented, 
the application of translation operators scales very poorly. Developing a method so that 
remote fields (fields of far away groups that are stored in remote nodes) are brought into 
the local cache and reused several times is essential to the overall scaling of the algorithm. 

A simple observation is the key to scalability. Consider several groups that are 
neighbors, i.e. close together in space. If one of these groups needs a particular remote 
field, it is likely that its neighbors will also need the field since the distances between the 
neighbors and the remote group are roughly the same. The essential idea is to translate 
the remote field to all of the neighbors in succession which brings the field into the cache 
and reuses it many times. 

To implement this idea, we need a ordering (numbering) of the groups for each level 
in the tree that keeps groups that are close together in space also close together in the 
ordering. Such an ordering is given by a breadth-first traversal of the group tree. A 
breadth-first traversal at a level is defined as follows. For the top-most level H - 1 the 
traversal is just to visit the single top-most group. To traverse level I < H - 1, visit all of 
the groups which are at level I + 1 in breadth-first order and for each level I + 1 (parent) 
group visit each of its subgroups. Since the subgroups are contained within the region of 
the parent, we get an ordering that keeps groups close together in space. This ordering is 
analogous to the Morton order reported in [10]. 

One final issue has to do with the small size of the cache. The basic loop for applying 
translation operators applies all operators to a group m before moving on to the next group 
in the ordering. It must be done this way in order to keep gm (the far field representation 



Processors Time (s)    Speedup    Efficiency (%) 
1 607.9                1                     100 
2 298.4             2.0                     100 
4 152.3             4.0                      100 
8 79.6             7.6                        96 

16 42.6            14.3                        89 
32 23.6           25.9                        81 

TABLE 1 
Scalability of threaded multilevel FMM. 

of the j-expansion for the group) in the cache as well. Caches are too small however, to 
keep all of the remote fields at once, defeating the purpose of the ordering. The solution is 
to translate only a piece of the far field representation of a far away group at a time. The 
specific size of the pieces depends primarily on the cache size, but limiting the piece size 
kps to about kps = 80 double precision complex numbers has worked well in practice on 
several machines. So, at a given level, the ordering is traversed translating a piece of the 
far field representation for each group. At the end of the ordering, the process moves on 
to the next piece of the representation. This is repeated until all the far fields have been 
translated at that level. The code then continues onto the next level. The algorithm is very 
cache friendly. 

In detail, translate is implemented as follows: 

for (IE0...H-1) 
for (kk = 0; kk < A',; kk = kk + kps) 

ksize = min(kslice. K\ - kk) 
for  (m e first(Q,p).. .last(C[,p)) 

for (m' G far(m)) 
for  (k £ kk... kk + ksize - 1) 

9mk — 9mk + ^mm'kSm'k 

where TmTn>k = p(k, Xm —Xm/). These are the quantities that are precomputed in the setup 
phase. The effectiveness of the new implementation is demonstrated in the next section. 

5    Results 

The scaling of the threaded multilevel FMM apply algorithm is given in Table 1. Listed is 
the apply time in seconds versus the number of processors for a 16A radius sphere discretized 
by 153,600 unknowns. Also listed is the speedup Sp = T\/Tp where Tp is the apply time 
for p processors, and the parallel efficiency 1005p/p. The scaling is very good, with 32 
processors achieving 81% efficiency. 

The effect of the technique used to apply the translation operators is shown in Table 2 
for the same problem. The table shows the total time spent by all processors in the Translate 
step. Using the technique described in Section 4.3 , the effort to apply the operators grows 
by 29.3% as the number of processors increases from 1 to 32 (the elapsed time is 82.5s for 
1 processor and 3.33s for 32 processors). In contrast, if the operators are applied naively 
without ordering the groups or dividing up the far field directions for cache efficiency, the 
effort to apply the operators grows 173% and begins to take a substantial fraction of the 
total apply time. 

The scaling of the apply can be further improved by additional tuning in Uptree and 
Downtree. The main problem is that static data for the filters is not replicated across the 



Processors 
Scalable (s) 

Unscalable (s) 

1 2 4 8 16 32 
82.5      81.7      83.7      88.2      94.5    106.7 
99.1    110.4    124.5    158.8    204.9    271.0 

TABLE 2 
Time spent doing translations versus number of processors for scalable and unscalable imple- 

mentations. 

nodes which causes a bottleneck (filter dynamic data, like the matrices, are replicated). 
This can be improved with some programming effort. 

6    Concluding Remarks 

The threaded approach taken here has some advantages over explicit message passing. 
Often some of the interprocessor communications required in complex parallel codes are not 
performance sensitive. Such communications can be handled automatically by the hardware 
in a threaded shared memory approach without burdening the programmer. Making the 
performance sensitive parts work properly, i.e. scale, is largely an exercise in tuning the 
caches which must be done regardless for good uniprocessor performance. 

In addition, there is a maintainability benefit. As fast scattering codes gets more 
complicated, with the addition of support for complex materials and subwavelength 
structures, the load balancing problem implicit in message passing codes will become very 
complex. Parallelizing such codes will be easier in a shared memory environment. 

Significantly, the compact size of the FMM allows the exploitation of another form of 
parallelism: computing the scattering from multiple incident angles. With large 0(N2) 
operators the entire machine would be needed just to store the operator. The FMM is 
far more compact and can be replicated several times in a supercomputer, making the 
multiple angle problem embarrassingly parallel. The same is true for design optimization 
(parameter) studies. 

The parallel FMM presented here is part of the FastScat program for performing 
electromagnetic scattering calculations. Recently, FastScat computed the radar cross 
section for both polarizations of an 40A radius sphere to 0.16 db rms accuracy in 20.7 hours 
on a 32 node Origin 20001. The target was over 20,000 square wavelengths. The ability to 
accurately compute the RCS of such a large target is due to the FMM, a discretization of 
the integral equation that is of high order [1], and a scalable parallel implementation of the 
FMM. 
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Abstract 

We describe the FastScat™ program for electromagnetic scattering calculations and its parallel 
implementation on the SGI Origin 2000. FastScat recently computed the radar cross section of a sphere 
having an area of 45, 239A2 to high accuracy in about a day. This is contrasted with a result for an 354A2 

sphere reported at Supercomputing '92. Taking both size and accuracy into account, the FastScat result 
represents an improvement in solution time of over nine orders of magnitude. This improvement was 
due to systematically focusing on several issues that impact the scalability of electromagnetic scattering 
calculations. 

1    Introduction 
This paper presents the FastScat™ program for efficiently performing frequency domain electromagnetic 
scattering calculations using a boundary integral equation formulation on parallel computers. Typical 
applications include radar cross section (RCS) prediction, the computation of antenna radiation patterns, 
and high-frequency circuit package modeling. FastScat is a truly scalable code in that: 

• additional accuracy in a computed solution can be achieved at low cost; 

• a small increase in problem size (area) causes only a modest increase in computer resources; and 

• the code shows good parallel scalability. 

The scalability of FastScat allows us to perform scattering calculations for very large objects. As an example, 
FastScat recently computed the RCS of a metal sphere having an area of 45,239A2 (radius r = 60A) to high 
accuracy in about a day. This is in contrast to the result for an 354A2 sphere computed by the Patch code 
running on the Intel Touchstone Delta reported at Supercomputing '92[3]. Taking both size and accuracy into 
account, the FastScat result represents an improvement in solution time of over nine orders of magnitude. 

Scattering cross sections and radiation patterns can be computed by solving a matrix equation, Z-I = V, 
derived from the discretization of an integral equation. The number of unknowns N required for accurate 
modeling of such problems can be very large, which can severely limit problem size. The system can be 
solved by factoring the dense matrix Z (using 0(N3) operations), or by using an iterative method which 
requires 0(N2) operations per iteration. Each iteration of an iterative solver involves the multiplication of 

'This work was supported by the Defense Advanced Research Projects Agency, the Air Force Office of Scientific 
Research, Hughes Electronics, and the Raytheon Systems Company. Computer runs were performed at the Army 
Research Laboratory's Major Shared Resource Center in Maryland. 
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an approximate solution I for the source distribution by the impedance matrix Z. The iteration count must 
be controlled to achieve reasonable solution times. 

There are four important solution method characteristics required to achieve scalabilty: 

• The method must be high order. It is desirable that computed solutions converge as h. the characteristic 
scale size of the discretization, decreases. For boundary integral solutions to scattering problems, the 
error e generally scales as e oc hp, where p > 1 is the order of convergence. Most codes based on 
the Method of Moments, such as Patch, are low order: e ex h2. In contrast, FastScat is high order 
and values of p up 10 are routinely used. High order convergence allows us to get extra accuracy 
for minimal additional computational cost. This is essential for estimating the solution error and 
computing scattering from objects with large dynamic ranges[l]. 

• The method must be fast. An 0(Ar3) method is feasible only for small problems. By using an 
iterative solver and switching to the Fast Multipole Method (FMM)[2, 4, 6, 7, 9], the time complexity 
can be reduced to 0(CtN log2 N) where C, is the iteration count. The FMM constructs a sparse 
representation of Z which is used to efficiently compute the product Z ■ I. 

• The integral equation must be well conditioned. FastScat uses a Combined Field Integral Equation 
formulation (CFIE)[9] which results in a well conditioned operator for many scatterers. The CFIE, in 
conjunction with a simple preconditioner and a conjugate gradient solver, keeps the iteration count C, 
reasonable. 

• The implementation must have good parallel scalability. The crucial parallel operation in FastScat 
is applying the FMM. All other computations are either embarrassingly parallel or are so cheap that 
they can be done on a single processor. A substantial amount of work has been done on parallelizing 
the FMM for the Laplace equation[5, 8, 13]. For electromagnetic scattering, the Helmholtz FMM 
is required. Achieving good parallel scalability with this variant of the FMM poses some additional 
challenges[10, 11]. 

Some parts of this work have been previously reportedfl, 6, 9, 11]. Here we show how all of the parts fit 
together to enable the solution of very large scattering problems. In total, we believe this work serves as the 
current benchmark for the state of the art in frequency domain electromagnetic scattering calculations. 

This paper is organized into a section on each aspect of scalability, followed by a results section and 
some concluding remarks. 

2   Discretizating the Integral Equation 
Here we consider a prototypical scattering problem — 3d scalar scattering with Dirichlet boundary conditions 
— to show how the linear system V = Z ■ I is formed. This will set the stage for the following sections on 
discretizations and the FMM. 

A specified field </>(x) on a surface 5 induces an unknown source distribution cr(x') on 5. This 
distribution radiates a scattered field 

1>{x) =  [ G(x - x')cr(x')dx' (1) 

where the Green function is 

G(r) = _ (2) 

k0 is the wave number (k0 = 2n in free space for dimensions in wavelengths), and r = |x - x'|. Applying 
the Dirichlet boundary condition </>(x) + ^(x) = 0 for x on S, gives 

tf(x) = - [ G(x - x')a(x')dx',    x on S. (3) 
Js 

For a moment, ignore the singular nature of G. This integral can be evaluated numerically by choosing a 
suitable TV-point quadrature rule. Evaluating Equation 3 at the zth abscissa of the quadrature rule gives 

N 

Vl = -Y^wjGi:h (4) 



where Vt — 0(x;), Gtj — G(x, - Xj), and Wj is the weight of the jth sample point (at Xj) of the quadrature 
rule. We want to solve this linear system for the unknown sources /. From /, we can easily compute the 
scattered field at any place exterior to 5. 

Equations equivalent to Equation 3 are also available for electromagnetic scattering. FastScat uses the 
Combined Field Integral Equation formulation which is well conditioned and immune to spurious internal 
resonances[9]. Using the CFIE in conjunction with a simple preconditioner1 and a conjugate gradient type 
solver keeps iteration counts reasonable. For the r = 60A sphere, only 19 iterations were required for roughly 
two digits of accuracy. 

3   High Order Discretizations 
The quadrature rule used in Equation 4 is selected so that it integrates a certain class T of functions over S 
exactly. If the source distribution can be represented exactly as an expansion over T then the convolution 
can be computed exactly. 

In practice, the source distribution on an arbitrarily-shaped surface can be well approximated by dividing 
it into patches and locating the sample points on each patch according to a quadrature rule that can integrate 
polynomials exactly up to order p. In the case of quadrilaterals, an appropriate rule is formed from the 
product of two Gauss-Legendre rules. Analogous rules exist for triangles[12]. The overall discretization will 
converge with 0(hp) assuming expansions over T are accurate to that order. 

This works extremely well for regular kernels, but Nature is not so kind and the Helmholtz kernel 
G behaves poorly as the points i and j become close. When this happens, the quadrature rule needs to 
be adjusted to account for the singular and oscillatory nature of G. The proper adjustment is achieved by 
replacing the discretized Green function in Equation 4 by 

G(XJ — Xj)    if Xj is far from x 
d ■ = <      v J/ J (5) 13      \ Lij otherwise 

where the Ly are known as the "local corrections'^ 1]. The definition of "far from" depends on the desired 
accuracy. In practice it is about a half wavelength for two digits. 

For a given field point i, the L,j are computed by solving the linear system 

^wjLijfWixi - Xj) = f   G(xt - x')/(fc)(x,- - x')dx' (6) 

for all the testing functions /(fc) in T. The region Dt is the local domain of the ith field point. This region 
is determined by computing the right hand side of Equation 6 adaptively, on a patch by patch basis, and 
comparing it to the left hand side quadrature. This procedure proceeds until the difference is below some 
error tolerance. The local corrections Ly for points outside of Di are zero so the linear system is small. The 
number of points in £>; may be different from the number of testing functions in T, in which case, singular 
value decomposition is used to solve the system. However, it is often possible to arrange the system so that 
the number of points and functions are the same. This approach restores the desired order of convergence, 
which has been shown on many scatterers. 

In terms of scalable scattering calculations, high order discretizations allow us to check the accuracy of 
solutions relatively cheaply. They also allow us to often compute a solution to a given accuracy with fewer 
unknowns. 

4   Fast Multipole Method 
The FMM computes Bt = YljwjGijh (Equation 4) for all points i in 0(N log2 N) time. This is the 
product Z ■ I needed by the iterative solver. This section presents the basics of the Helmholtz FMM. 

'The preconditioner is block diagonal and represents the inverse of some FMM group self-interactions. It works well 
for many scatterers, but does not remove all of the ill-conditioning in the formulation. Generalizations to the CFIE are 
currently being explored and some look very promising. 



Consider two well-separated spheres of radius R: and R2, each containing a collection of Helmholtz 
sources. We want to quickly evaluate the field generated by all the sources in Rt at every source in #,. This 
field can be written as a multipole expansion valid outside of R: as 

iiT) = Ytßimhi(kr)Yim(e,ö) (7) 
Im 

where r, 0, and 6 are relative to a coordinate system centered in Ri.hi(kr) are spherical Hankel functions 
of the first kind, and Ylm(6.6) are normalized spherical harmonics. We refer to this expansion as an h- 
expansion. Similarly, we can write an expression for the field valid inside R2 : 

<p(r) = 2^aimji{kr)Ylm(e,d) (8) 
IT 

where the coordinate system is now centered in R2, and j,(kr) are spherical Bessel functions. We refer to 
this expansion as a j-expansion. For the moment, we consider both of these to be infinite sums. The FMM 
then rests on three observations: 

• The origin of an h-expansion can be shifted arbitrarily inside Ru and a new set of coefficients, ßlm, 
can be computed for this new expansion. The same holds for shifting a j-expansion arbitrarily to a new 
origin inside of R2, which results in a new set of coefficients, a/m. 

• An h-expansion valid outside of i?: can be translated and converted into a j-expansion valid inside R2. 

• Most crucial, these shifts and translations can be done efficiently by transforming the coefficients into 
a basis in which both operators are diagonal. 

The far-field transform of an arbitrary function f(k) is 

f(k) = Y,ilYlm(k)flrn (9) 

lm 

and the inverse transform is given by 

fim = Jdkr'Yl-m(k)f(k) do) 

where k is a unit vector represented by polar and azimuthal angular components {kg, fc0). 
It is in this k-basis that the shift and translation operators are diagonal. An h-expansion in its far-field 

basis is shifted from a point x to another point x' both inside of Rx by 

ß(k) = X(k,x'-x)ß(k) (11) 

where A is given by 

\(k,x' -x) = eifc°*-<x'-x> (12) 

The same shift operator A also applies to j-expansions.  It represents a "local" shift in the group center, 
retaining the exterior or interior expansion. 

The translation of an h-expansion into a j-expansion is through the translation operator/x, which, in the 
far-field basis is 

M(fc,x' - x) = £7(2/ + l)/i,(fc0|x' - x\)Pi(k • (x' - x)/|x' - x| (13) 

where the Pt are Legendre polynomials. 

In practice the expansions are truncated to a finite number of terms L depending on the group size and 
desired accuracy. The mathematical validity of this truncation is addressed by Rokhlin[7] but it is related to 
the fact that these series are asymptotic and are, therefore, of controllable accuracy. Empirically, it has been 
determined that the number of terms L needed in the expansions for a region of diameter D is[2] 

L = k0D + — log(k0D + TT) (14) 



where d is the desired number of digits. 
The above expressions for the translation operators, together with the far-field transform, are the basic 

tools used to construct a multilevel FMM algorithm. Clearly the field caused by a collection of sources inside 
an arbitrary group Gx can be evaluated at any point inside a second group G2 by converting the exterior h- 
expansion, valid outside 'G\, to an interior j-expansion which is valid inside Go. Also, we can calculate the 
field at that point caused by the sources in Gx by computing ä00, the leading term in the j-expansion. No 
other terms contribute, because the expansion is already centered at the field point where r = 0 and all the 
terms ji(0) are zero except for j0 which is one. Thus, we can evaluate the field directly through the far-field 
transform as 

(f>(0) = äoo = —f= / dka(k). (15) 
/4TT 

The abcissae k = (k$, kj,) of the numerical quadrature rule used to compute this integral are selected so that 
it can be performed exactly. One choice is to use a trapezoidal rule of 1L points in the 0 direction and an L 
point Gauss-Legendre rule in the 6 direction. This discretization of the k basis is used throughout the FMM. 

The multilevel Helmholtz FMM works in fundamentally the same way as the Laplace FMM in that it 
combines expansions valid inside the original groups to form expansions valid inside correspondingly larger 
groups with bigger group diameters. This recursive regrouping results in a tree-like structure that has groups 
of different sizes at different levels of the tree. The h-expansions from neighboring groups are shifted and 
combined into a single h-expansion representing a larger group when going up the tree, and j-expansions in 
a large group are converted to smaller groups going down the tree. The details of this process are given in 
Section 5.1. 

There is, however, an important mathematical detail. When going up the tree, it is necessary to 
interpolate the far-field representation of a group at one level onto the denser (k more closely spaced) 
basis of the group one level higher. Similarly, when going down the tree, it is necessary to convert to a 
sparser basis in a filtering process. In both cases, the code converts from the far-field basis to the multipole 
coefficients and then back to the new far-field basis using the definitions given in Equations 9 and 10. The 
actual implementation is in terms of fast Fourier transforms for the k^ direction, and fast associated Legendre 
transforms for the ke direction[14]. As a practical matter, a slow associated Legendre transform which is 
implemented in terms of matrix multiplication can be used on rather large problems because of the small 
prefactor in its time complexity relative to the fast transform. However, fetching the transform matrices from 
memory causes some scalability problems which are addressed in Section 5.2. The details of the filtering 
and interpolation processes are given in [6]. 

5   Parallel Implementation 
FastScat is implemented in a threaded style assuming a cache-coherent distributed shared memory machine. 
On the O2000, it uses IRIX threads (SPROCs)fll]. A POSIX threads version is also available. It order to 
achieve parallel scalability, it is essential that the local processor caches be used effectively and that selected 
data structures are replicated to reduce network contention. 

A FastScat run progresses through three phases: setup, solve, and RCS computation. The setup computes 
the local corrections Ly, and is embarrassingly parallel. The scalability is good to about 32 processors and 
then begins to fall off due to contention over the discretization data structures. The RCS computations are 
also easy to parallelize. Perfect scalability in the setup and RCS phase are not presently a concern since, on 
practical problems, FastScat spends most of its time solving for the surface currents for various excitations 
("look angles")2. 

The solve phase uses the iterative solver, preconditioner, and FMM. The preconditioner can be 
applied in parallel easily (backsubstitution of the blocks), and the iterative solver does inner products over 
relatively short vectors (at most a few million elements) which can be done on a single processor. Naive 
implementations of the FMM, however, scale very poorly. On the O2000, there is hardly any benefit to using 
more than a few processors. The remainder of this section describes the implementation of FastScat's parallel 
FMM. 

2The sphere run spends more of its time in setup since there is only one look angle. 



5.1    Parallel FMM 
There are two primary FMM routines: setup which builds the data structures, and apply which computes the 
product Z ■ I. 

The setup routine works as follows. First, a tree of groups is constructed. The lowest level (/ = 0) 
groups contain elementary sources. Each higher level group at some level /. contains up to eight level / - 1 
subgroups of one half the size in each linear dimension. However, since a surface is being discretized, the 
typical number of subgroups is about four. The top of the tree consists of a single group which contains 
the entire scatterer. The quantity H is the height of the tree in levels, and the topmost level is H - 1. Let 
groups(l) be the set of groups at level /. and Mi be the number of elements in this set. Denote the parent 
of a group m by mp. Finally, let Li be the number of terms in the expansion at level / as determined by 
Equation 14. 

For each group m two sets (lists) are constructed, nearby(m) and far(m), based on the following 
conditions: 

m'enearby{m)    iff    fc0Xmm- < Lu (16) 

m' € far(m)    iff   m' $ nearby{m) and k0XmpTn.p < L,+1 (17) 

where m and m' are members of groups (I), and Xmm- is the vector between the group centers Xm and 
Xm/. In other words, a group is in the nearby list of m if it is too close to use the translation operators at that 
level. Otherwise, it is in the far list as long as the parents of m and m' are too close to use their translation 
operators. Interactions between sources are accounted for at the highest possible level. 

Once the tree is constructed, various quantities, such as the translation operators are computed. The 
setup routine is called only once. 

When the iterative solver needs to compute B = Z ■ I, it calls the apply routine. For most problems, 
FastScat spends most of its time in apply. Apply is implemented in terms of P threads where P is the number 
of processors. The apply steps are written in terms of loops over groups and it is a simple matter to split these 
loops over the threads. These loops are controlled by a thread-safe counter that has two primary routines: 
reset(C) and next(C,p), where C is a counter and p is a thread number. The reset routine sets the counter 
to zero and acts as a barrier. The next routine returns the next value of the counter. The basic usage is that all 
the threads initialize the counter to zero with reset, and then enter a loop getting the next value of the counter 
until all the groups at a given level have been processed. In addition, there are two routines first(C,p) and 
last{C,p) which together define a sequence of groups first(C,p)... last{C,p) that thread p can process 
efficiently because the data structures for the groups have been allocated locally (see Section 5.2). 

To compute B - Z ■ I, each thread p does the following: 

Local-to-Far: The far-field basis of each I = 0 group is constructed from its sources. There is no need to 
compute the multipole coefficients since it is a simple matter to compute the far field directly from the 
sources. 

for  {reset(C0)-sm < A/0; m = next(C0,p)) 
for  (keO...K0-l) 

Note that at every level in the tree, there is a counter C, controlling the iterations at that level. The 
number of far field directions at a level is Kt = 2Lj using the quadrature rule described in Section 4. 
It should be clear that each value of an index k represents some k = (ke, fc^) in the discretized far field 
basis for that level. The sources of a I = 0 group m are sources(m), and the location of a source a is 
xQ. The vector s is simply the ß(k) quantities of Section 4. 

Uptree: The far fields due to each subgroup of a group are interpolated and shifted to the group's center and 
accumulated to form the far field basis of the parent group. 

for  (lel...H-l) 
for  (reset(Q);m < Mr,m — next(Ci,p)) 

for  (m' € subgroups(m)) 
sm* = interpolate(smi) 



for  (k€0...Ki- 1) 
Smk = Smk + \(k,Xm - Xm')sm'fc 

Translate: For each group m, the far field of each far away group is translated to m, converted to a j- 
expansion, and accumulated. This gives the field due to all groups far from m as a j-expansion valid 
inside of m. 

for (Ze0...tf-1) 
for (m € first(Ci,p) ■ ■ .last(Ct,p)) 

for (m' € far(m)) 
for (it e O..Ki - 1) 

9mk = gmk + H(k, Xm - Xm>)sm'k 

The vector g contains the a (A;) quantities. 

Downtree: The j-expansions are walked down the tree in a way analogous to Uptree. The code works 
downward from level H - 1, shifting the field gm of group m to its subgroups and then filtering 
(instead of interpolating). The parallel structure is just like Uptree. 

Far-to-Local: At the bottom of the tree, the j-expansions are used to evaluate the field at each source due to 
all far away sources. The procedure is the same as the Local-to-Far step except that k —♦ —k. At the 
end of this step, the result (B) has been computed for all far away interactions. 

Direct: To account for interactions between groups that are too close to each other to use the FMM, the 
locally corrected kernel (Equation 5) is used directly: 

for   (reset(C0);m < M0;m = next(C0,p)) 
for   (m' £ near(m)) 

for  (a £ sources(m)) 

Bma = Braa + T.a'€sources(m>) G(X° ~ X"')L' 

This description of the parallel algorithm is very similar to its sequential counterpart. The only complications 
are operations on the counters, which look like regular loops. The similarities between the parallel and 
sequential algorithm make implementation and maintenance easier. 

This algorithm is for scalar (acoustic with Dirichlet boundary conditions) scattering. For the vector case 
(electromagnetic), the work doubles because two field components must be kept for each source but the 
algorithm is otherwise straightforward. The results in Section 6 are for electromagnetic scattering. 

5.2   Data Placement 
For most FMM steps, memory references tend to be localized to the data associated with a particular group 
and its subgroups. In order to make these references efficient (accesses to local memory) each apply thread 
p is assigned a sequence of groups first(Ct,p)... last(Ci,p) at each level I. For example, if there are eight 
groups at a level and two threads, the first thread gets groups 1... 4 and the second thread gets 5... 8. As 
part of its initialization, each thread allocates certain key data structures, such as s and g for its sequence of 
groups. These allocations will generally go to the local memory since a first-touch memory allocation policy 
is used. Threads also set their processor affinities so that they are not moved away from their data structures 
by the operating system. One additional point is that counter's next(Q,p) routine first returns groups in 
thread p's sequence. Once the sequence is exhausted, it returns groups in the sequences of threads that are 
lagging behind in the computation. This acts as a form of dynamic load balancing[l 1]. 

A modest amount of data replication is also required. The routines interpolate and filter used by 
Uptree and Downtree contain several moderately sized matrices used in the filtering and interpolation process 
(Section 4). These must be replicated a few times to reduce network contention and preserve the scalability 
of Uptree and Downtree. Presently, FastScat replicates the matrices in every node (two processors), but this 
is probably an overkill. 



Processors Time (s) Speedup Efficiency (%) 
1 607.9 1 100 
2 298.4 2.0 100 
4 152.3 4.0 100 
8 79.6 7.6 96 

16 42.6 14.3 89 
32 23.6 25.9 81 

TABLE l 

Scalability of threaded multilevel FMM for a r = 16A sphere. 

5.3   Scalable Application of Translation Operators 
Applying the translation operators in a scalable way is more problematic. Here the fields of all far away 
groups from a particular group are translated, converted to a j-expansion valid inside the group, and summed. 
It is likely that the field of a far away group will be in a remote node which makes this step highly cache 
sensitive. If naively implemented, the application of translation operators scales very poorly. Developing a 
method so that remote fields (fields of far away groups that are stored in remote nodes) are brought into the 
local cache and reused several times is essential to the overall scaling of the algorithm. 

A simple observation is the key to scalability. Consider several groups that are neighbors, i.e. close 
together in space. If one of these groups needs a particular remote field, it is likely that its neighbors will 
also need the field since the distances between the neighbors and the remote group are roughly the same. 
The essential idea is to translate the remote field to all of the neighbors in succession which brings the field 
into the cache and reuses it many times. To do this, we need a ordering (numbering) of the groups for each 
level in the tree that keeps groups that are close together in space also close together in the ordering. Such an 
ordering is given by a breadth-first traversal of the group tree. This is analogous to the Morton order reported 
in [13]. 

One final issue has to do with the small size of the cache. The basic loop for applying translation 
operators applies all operators to a group m before moving on to the next group in the ordering. It must be 
done this way in order to keep gm (the far-field representation of the j-expansion for the group) in the cache 
as well. Caches are too small, however, to keep all of the remote fields at once, defeating the purpose of 
the ordering. The solution is to translate only a piece of the far-field representation of a far away group at 
a time. The specific size of the pieces depends primarily on the cache size, but using a piece size (kps) of 
80 double precision complex numbers has worked well in practice on several machines. So, at a given level, 
the ordering is traversed translating a piece of the far-field representation for each group. At the end of the 
ordering, the process moves on to the next piece of the representation. This is repeated until all the far fields 
have been translated at that level. The code then continues onto the next level. 

In detail, translate is implemented as follows: 

for  (1<=0...H-1) 
for   (kk = 0; kk < Kt;kk = kk + kps) 

ksize = min(kps, K\ — kk) 
for   (me first(Ci,p)...last(Ci,p)) 

for   (m  G far(m)) 
for   (k e kk ... kk + ksize - 1) 

9mk = gmk + Tmm/*.Sm/j- 

where Tmm>k = p(k, Xm - Xm<). These quantities are computed in the setup phase. 

5.4   FMM Parallel Scalability Results 
The scaling of the threaded multilevel FMM apply algorithm is shown in Table 1. The apply time in seconds 
versus the number of processors is given for a r = 16A sphere discretized by 153,600 unknowns. The 
speedup Sp = Tx/Tp (where Tp is the apply time for p processors) and the parallel efficiency 10QSp/p are 
also listed. The scaling is very good, with 32 processors achieving 81% efficiency. 

Tuned and naive implementations of the translation operator application are compared in Table 2 for the 
same problem. The table shows the total time spent by all processors in the translate step. The effort to apply 



Processors 1 2 4 8 16 32 
Tuned (s) 
Naive (s) 

82.5 
99.1 

81.7 
110.4 

83.7 
124.5 

88.2 
158.8 

94.5 
204.9 

106.7 
271.0 

TABLE 2 

Time spent doing translations versus number of processors for tuned and naive implementations. 

Year 1992 1999 
Code Patch FastScat 
Computer Touchstone Delta Origin 2000 
Processors 512 64 
Radius (A) 5.31 60 
Area (A2) 354 45,239 
Accuracy (db rms) 2 (est) 0.12 
Unknowns 48,673 2,160,000 
Memory (Gb) 38 45.5 
Time (hrs) 19.6 27.9 

TABLE 3 

State of the Art: 1992 vs. 1999 

the operators grows by 29.3% as the number of processors increases from 1 to 32 (the elapsed time is 82.5s 
for 1 processor and 3.33s for 32 processors). In contrast, if the operators are applied without ordering the 
groups or dividing up the far field representation for cache efficiency, the effort to apply the operators grows 
173% and begins to take a substantial fraction of the total FMM time. 

6   Electromagnetic Scattering Results 
FastScat was used to compute the bistatic RCS of a r = 60A sphere for both polarizations on a 64 processor 
SGI Origin 2000. Table 3 shows information from the run including problem area, accuracy (as compared to 
the Mie series solution), number of unknowns, memory required, and run time. It is compared to the 1992 
result from the Patch code on the Touchstone Delta. The FastScat run times by phase were 20.2 hours for 
setup (mostly computing local corrections), 7.66 hours for the solve (computation of surface currents using 
the FMM), and 1.04 hours to compute the bistatic RCS at 1,800 angles. Figure 1 plots the computed RCS 
versus the Mie series solution. The two curves are nearly identical. 

The Patch code used a tuned out-of-core solver to factor Z. The solver was carefully constructed to 
overlap disk I/O, interprocessor communication, and computation, to achieve high performance. It sustained 
a rate of 10.35 Gflops, which was within a factor of 2 of the theoretical maximum rate of the Delta for the 
inner loop of the computation. The Patch/Delta result represented the largest reported scattering run to date 
in 1992. 

It would take Patch/Delta some time to match the FastScat result in both size and accuracy. In order 
for Patch to achieve an accuracy of roughly 0.2dB, the number of unknowns would have to be increased by 
about a factor of 10 due to the 0(h2) convergence rate of its discretization. The difference in area is over a 
factor of 100. Taken together, the unknown count must increase ~ 1000 fold. Since the factorization process 
is 0(N ), the run time can be expected to increase by roughly nine orders of magnitude. 

We have used FastScat to compute the RCS of a variety of benchmark targets. Figure 2 shows the 
currents induced on the Dart, a standard test case, at 18 GHz with the incident radiation nose-on. At this 
frequency, the Dart is 4441A2 in area and is discretized by 436,000 unknowns. Figure 3 show the monstatic 
RCS in both polarizations using an over-the-top scan. This scan goes from the back at -90 degrees to the tip at 
90 degrees. By using convergence studies, which are relatively inexpensive with a high order discretization, 
the error has been estimated at approximately 0.1 dB in the high RCS regions and roughly 2 dB in the stealthy 
regions (near the tip). FastScat required 8.3 Gb of memory, did the setup in 3.0 hours, and solved for each 
monostatic angle in an average of 17 minutes. A 32 processor Origin 2000 was used. At 436,000 unkowns, 
the 18 GHz Dart is too large for dense matrix techniques even on the biggest supercomputers. 
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FIG. 1.  Computed RCS of a r = 60A sphere compared to the Mie series solution. 
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FIG. 2.  Computed surface currents of the Dart at 18 GHz. 



11 

Dart @ 18 GHz: Theta Scan 
 ■ i ' ■ ' i ■ 

88 pol — 
<^pol — 

i ■■■ i ... i ... i •■■ i ... i ... i 

-90     -75     -60     -45     -30     -15       0       15      30      45      60      75      90 
Theta (degrees) 

FIG. 3. RCS of the Dan at 18 GHz in both polarizations using over-the-top scan (<j><i> polarization shifted -20dB 
for legibility). 

All of the runs in this section were done in a production environment where FastScat was sharing 
machine resources with other jobs. Generally the load average did not exceed the number of processors, 
but this was not always the case. 

7    Concluding Remarks 
A purpose of this paper is to put forth a more general notion of scalability. Parallel scalability is important 
since only scalable parallel codes utilize large, expensive computers effectively. But Moore's law and big 
iron are no match for algorithmic scalability. 

The Helmholtz FMM and contemporary large computers are complementary. Consider a slow 0(N3) 
method with a small prefactor. For these methods, large computers confer little advantage. A modest increase 
in the number of unknowns quickly exceeds the capacity of even the largest machine. As a result of increased 
microprocessor performance and microprocessor count (from a few hundred to a few thousand), modern 
supercomputers are nearly 100 times faster than the Delta. Yet even on these machines, codes that do not 
take advantage of the algorithmic advances can only do problems about 4 times larger than what the Delta 
did in 1992. In contrast, the Helmholtz FMM has superior asymptotic complexity but a large prefactor. It 
takes a fairly big machine just for the FMM to breakeven with respect to the slow method. But the benefit is 
that you can move out to much larger problems and still stay within the available machine resources. High 
accuracy solutions for problems exceeding a million square wavelengths are possible on the largest present 
day machines with modern algorithms. 

The FastScat development effort is continuing in the areas of modeling subwavelength structures such 
as edges and gaps, and in the incorporation of material properties. We see no reason why these extensions 
can not also be accomplished in a scalable way. 
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electromagnetic scattering [4]. and in several other environments. In this paper, we describe 
a version of the one-dimensional FMM which has been generalized so as to calculate 
not only electrostatic potentials, but a wide class of similar kernels, and we describe an 
accelerated version of the algorithm of [10] in which two subroutine calls to the original 
one-dimensional FMM are replaced by one call to the generalized FMM. 

Formally, this paper describes an algorithm for the following task: given an n x m matrix 
P of a certain structure and given a desired accuracy s. compress P so that its product with a 
vector can be efficiently computed to that accuracy. The structure the algorithm requires of 
P is as follows: there must exist numbers x\ < AI < • • ■ < x„, and \] < y2 < ■ ■■ < y„ such 
that, roughly speaking, any submatrix of P which is separated in index space from the line 
Xj — \j by a distance greater than its own size has a rank less than some (reasonably small) 
number r, to the precision e; the CPU time taken by the algorithm for multiplication of P 
by a vector is then 0{nr). (A rigorous accounting of the execution time of the algorithm is 
somewhat complicated and is given in Section 3.2.6.) One matrix P = [ptj] which has such 
a structure is given by the formula 

and is the matrix whose multiplication by a vector is implemented by the original one- 
dimensional versions of the FMM. 

This paper is arranged as follows. Section 2 briefly reviews numerical tools used by the 
algorithm. Section 3 describes the generalized FMM in its basic form. Section 4 describes 
modifications to the algorithm of Section 3, the principal one of which is the diagonalization 
of roughly a third of the interaction matrices. Section 5 contains numerical results for 
the generalized FMM applied to the matrix (1). Section 6 describes modifications to the 
algorithm of [10] which incorporate the generalized FMM. Finally, Section 7 examines 
generalizations of the schemes presented in this paper. 

2. NUMERICAL PRELIMINARIES 

2.1. Singular Value Decomposition 

The singular value decomposition (SVD) is a ubiquitous tool in numerical analysis, given 
for the case of real matrices by the following lemma (see. for instance. [ 14] for more details). 

LEMMA 2.1. For any n x m real matrix A. there exist an integer p, ami x p real matrix 
U with orthonormal columns, an m x p real matrix V with orthonormal columns, and a 
p x p real diagonal matrix S = [sij] whose diagonal entries are nonnegative, such that 
A = USV* and that sn > s,+i.,+i for all i = 1 p — 1. 

The diagonal entries s„ of S are called singular values of A; the columns of the matrix 
V are called right singular vectors: the columns of the matrix U are called left singular 
vectors. 

2.2. Least Squares Approximation 

This section contains three lemmas on the least squares approximation of matrices, proven 
in a more general setting in [15]. In this section and in the remainder of the paper K"'" will 
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denote the space of all real n x m matrices, and the matrix norm used will be the Schur or 
Frobenius norm: that is. for an n x m real matrix A - [a,,]. 

\\A\\ = 

\ / = !   j = \ 

LEMMA 2.2. Suppose A is a pxn real matrix. B is an m x k real matrix, and C 
is a px k real matrix, for some m.p.n. and k. Let A = ÜASA \>* be a singular value 
decomposition of A. and let B = ÜBSBV"B be a singular value decomposition of B. Let r 
be the number of nonzero singular values of A. and let q be the number of nonzero singular 
values ofB. Let UA and VA consist of the first r columns ofÜA and VA. respectively, and 
let SA consist of the first r rows of the first r columns ofSA. Let UB and VB consist of the 
first q columns^ of ÜB and VB. respectively, and let SB consist of the first q rows of the first 
q columns ofSB. Then the solution X of the minimization problem. 

is given by 

Furthermore. 

min  \\AXB -C||. n) 
.Ye.-.'"" 

^^'^cv^'t/;. (4) 

\AXB - C\\ = \\C - UAU^CVBv;\\. (5) 

The following lemma provides a bound, in certain situations, on the error of the approx- 
imation given by Lemma 2.2. 

LEMMA 2.3.    Under the conditions of Lemma 2.2. suppose that there exist an n x A" 
matrix D and an p x w matrix E such that 

WAD-CWKEX (6) 

and 

\\EB-C\\<e1. (7) 

\\AXB~C\\ <£, +e2. (8) 

As shown by the following lemma, the error bound of Lemma 2.3 also applies when a 
different formula for the minimizing matrix is used. 

LEMMA 2.4.    Under the conditions of Lemma 2.3. let the n x m matrix Y be given bx 
the formula 

Y = DVBSjiU'B. (9) 

Then 

\\AYB-C\\  <£,+£;. (io, 
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3. BASIC FMM 

This section describes the generalized FMM of this paper. It is described as a set of 
modifications to the FMM of [6.3]: the reader is assumed to be familiar with that algorithm. 

The overall FMM structure of an upward pass for creation of far field expansions, fol- 
lowed by a pass which computes local expansions from far field expansions, followed bv 
a downward pass which propagates local expansions to lower levels and evaluates them, is 
retained. However, all the expansions are different, being based on singular value decompo- 
sitions rather than on analytical formulae. In addition, the hierarchical subdivision scheme 
is different, being performed according to matrix indices rather than according to point 
locations. (The expansions used permit almost any subdivision scheme, whether adaptive 
as in [15]. or nonadaptive as in [3]: the present scheme was chosen solely for its simplicity.) 

3.1. Subdivision Scheme 

The hierarchical subdivision is performed on column indices of the matrix P. as follows: 

• Each interval of column indices, if it is divided, is divided into two intervals of equal 
size (or differing in size by one. if the number of indices in the interval is odd). 

• The subdivision is uniform: either all the intervals at any given depth of the tree are 
subdivided, or none are. 

• The subdivision process continues until the lowest-level intervals are as close as pos- 
sible to a user-chosen size. 

For each interval [j\. j2] of column indices produced by the above process, a correspond- 
ing interval [;',. /2] of row indices is chosen such that the portion of P addressed by the two 
intervals of indices contains as much as possible'of the line .v,- = v,. The precise criterion 
used to choose the interval [/,. i2] is that it should be the interval of maximal size such that 

(*;,-i + Xh)/2 < V„ < < y,-,  <  (Xj:+Xj,+i)/2. (11) 

(If*/,_i or xj,+i does not exist, the corresponding inequality in the above equation is not 
enforced. The quantities x\ < x2 < ■ ■ ■ < x„, and yj < y2 < • • • < y„ were, in the present 
implementation, user-provided; in an environment where they are not readily available, they 
can be determined by numerically searching P for areas of high numerical rank.) 

3.2. Expansions 

This section describes the expansions used in the generalized FMM. Submatrices of P 
will be designated as follows: Pa,b denotes the portion of P whose column indices are in b 
and whose row indices are in a. where a and b are either intervals of indices into P, or sets 
thereof. 

For each interval, the FMM divides the intervals at the same depth in the tree into two 
sets: 

• 1. The near field region, consisting of the interval itself and the two adjacent intervals 
at the same depth in the tree of intervals. 

• 2. The far field region, consisting of all remaining intervals at the same depth in the 
tree. We denote the far field region of the f th interval by F,. 
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A third set is also required: the interaction list of an interval /' is the set of intervals at the 
same depth in the tree which are in the far field of / and which are not in the far field of the 
parent of/. 

3.2.1. Far-field expansions. The original FMM [6] relies on the fact that the electrostatic 
potential due to a set of charges can be represented to high precision, at points distant from 
those charges, by a multipole expansion of relatively few terms. In the generalized FMM 
described in this paper, the output (no longer necessarily the electrostatic potential, although 
we will continue to use the terms "potential" and "charge" for convenience) does not need to 
be describable by a multipole expansion, but can be describable by an arbitrary expansion, 
provided that the expansion coefficients are linear functions of the charge magnitudes 
and that the potential is a linear function of the expansion coefficients. The creation and 
evaluation matrices for this expansion, which we will call a far-field expansion, do not need 
to be furnished as such by the user: they are computed from the matrix P using the singular 
value decomposition. This computation is performed for each interval / for which a far-field 
expansion is needed and is as follows: Let «,- x m, be the dimensions of the matrix PFi. 
let the singular value decomposition of PFiA be denoted by ÜSV*. the number of singular 
values by p, and the singular values by sx > s2 > •• • > sp. Let p{ be the minimum integer 
such that 

5;<£||P|I~~- 02) 
J = P: + \ 

Let the w, x p, matrix V, consist of the first pt columns of V and let the p, x n, matrix 
Ei consist of the first p, columns of the product US. We will refer to V* as the far-field 
expansion creation matrix for interval / and to £, as the far-field evaluation matrix; the latter 
is not used explicitly in the algorithm. 

As shown in [8], the product £• V,* is, among matrices of rank ph the closest approxima- 
tion to the matrix PFJ in the norm (2). Thus the number of terms in any known expansion 
for PFj (such as a multipole expansion) is an upper bound for the number of terms p, in 
the far-field expansion of the same accuracy computed as above. 

3.2.2. Local expansions. Using far-field expansions alone, an 0(n ■ log«) version of 
the FMM can be produced (for an overview of the various versions see [7]). The 0(n) 
version of the FMM requires additional numerical machinery, namely local expansions, 
which approximate the potential on a region due to charges on distant regions. In the original 
FMM. local expansions were harmonic expansions: in the generalized FMM. creation and 
evaluation matrices for local expansions are computed from the matrix P using the singular 
value decomposition, as follows. Let n\ x m\ be the dimensions of the matrix PLFi; let the 
singular value decomposition of PiF be denoted by US V\ the number of singular values 
by r. and the singular values by s, > s2 > • • • >s-r. Let r, be the minimum integer such that 

Y. SJ <£-||P||--!_!.. (13) 

Let the m] x r, matrix t/, consist of the first r, columns of t/. We will refer to t/,- as the 
local expansion evaluation matrix for interval /. 
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3.2.3. Far-field translation matrices. The FMM does not compute far-field expansions 
for intervals at high levels in the tree directly from the charges in the interval, but rather 
computes them from far-field expansions at lower levels. Associated with each interval / 
whose parent interval j has a far-field expansion is a translation matrix T, which takes as 
input a far-field expansion for / and produces as output a far-field expansion for j which 
evaluates to the same potential. Let V,* be the far-field creation matrix for interval /. and 
let VJA be the far field creation matrix for interval j. with columns deleted such that it 
only accepts input from the interval /. Clearly the translation matrix T, should be such that 
for any m,-vector q. the vector TjV*q is as close as possible, by some measure, to the 
vector VJjq. The measure we use is the least squares measure: in particular. 7, is chosen 
so as to minimize the quantity ||r*,- - 7}V;*||. The formula for such minimization is given 
by Lemma 2.2: using the fact that the singular value decomposition of any matrix with 
orthogonal columns consists of that matrix multiplied by two identity matrices, it reduces 
in this case to 

Ti = yj.iVi. (14) 

We will refer to 7", as the far-field expansion translation matrix for interval /. 
Lemma 2.4 gives a bound for the error associated with using the translation matrix 7~. 

Suppose Ej,k and ELk are matrices which take as input the far-field expansions on interval j 
and on interval /. respectively, and use them to evaluate the potential on some other interval 
k and are such that 

\\Pi.k-Ej.kV*i\\<s] (15) 

\\P.k-E,.kV*\\<e2. (16) 

Using (15J, (16). and Lemma 2.4. we get that 

II Pi.k - Pj.kTj V* || < £| + e2■ (17) 

3.2.4. Local expansion translation matrices. The FMM does not evaluate local expan- 
sion for intervals at high levels in the tree directly at each of the points at which the potential 
is to be evaluated, but rather transforms them into local expansions for intervals at lower 
levels. Associated with each interval /, whose parent interval j has a local expansion, is a 
translation matrix A/,- which takes as input a local expansion on j and produces as output a 
local expansion on /. Af, is computed as follows. Let U,- be the local expansion evaluation 
matrix for interval i, and let £/,-.,• be the local expansion evaluation matrix for interval j, 
with rows deleted so that it only produces output on the interval /. Clearly the translation 
matrix Mi should be such that for any r,-vector a, the vector f/,M,a is as close as possible, 
by some measure, to the vector Ujjct. The measure we use is the least squares measure; in 
particular, M{ is chosen so as to minimize the quantity || t/,., - £/,• M{ \\. The formula for such 
minimization is given by Lemma 2.2. Using the fact that the singular value decomposition 
of any matrix with orthogonal columns consists of that matrix multiplied by two identity 
matrices, it reduces in this case to 

Mi = U*Uj.i. (i8) 
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The error incurred by using M, is bounded by Lemma 2.4: the analysis is almost identical 
to that presented in Section 3.2.3 for the far-field translation matrix T, and is omitted. We 
will refer to Mt as the local expansion translation matrix for interval /. 

3.2.5. Far-field to local interaction matrices. A far-field to local interaction matrix £. . 
takes as input a far-field expansion on an interval / and produces as output a local expansion 
on another interval j. Such matrices are constructed only for pairs of intervals (/. /1 such 
that ;' is in the interaction list of/. The matrix £,-.,• should be such that for all HI,-vectors q 
the product £/,£,., V'q is as close as possible, by some measure, to the product P, ,q. We 
choose £,., so as to minimize the quantity 

f,,, = \\Uj EJJV'-PJJW . (19) 

The formula for such minimization is given by Lemma 2.2: using the fact that the sin- 
gular value decomposition of any matrix with orthogonal columns consists of that matrix 
multiplied by two identity matrices, it reduces in this case to 

£,,=£/;£,, V,, (20) 

Lemma 2.3. combined with (12) and (13). gives abound for£,-.;: 

su<e\\P\\\ \: + v ■ <21> y V    "in \    n»i   I 

We will refer to £,., as the far field to local interaction matrix from interval / to interval j. 

Remark 3.1. A brief inspection of the above formulae for the creation, translation, 
and evaluation matrices {£/,•}. {V,}. {7]-}. {A/,}, and {£,.,} shows that the same matrices 
are generated, in different roles, if the input matrix to the algorithm is the adjoint P" of 
P. provided that the hierarchical subdivision is retained: the far field expansion creation 
matrices for P are identical to the local expansion evaluation matrices for P". and vice 
versa: the far field translation matrices for P are identical to the local expansion translation 
matrices for £*, and vice versa: and the far field to local matrices for P are the adjoints of 
the far field to local matrices for P'. Thus the matrices precomputed for P can also be used 
for multiplying by P". 

3.2.6. Execution time. The FMM performs one matrix-vector multiplication for each 
instance of the matrices {£/,}, {V,}, {T,}. {M,}, and {£,.,}. Thus the CPU time which it con- 
sumes is proportional to the total number of elements in all instances of the matrices. The 
sizes of the matrices depend on the numerical ranks p, and r,, as defined by (12) and (13). 
We analyze the execution time further only in the case that all those ranks are all bounded 
by some number r. In that case, the computation of far-field expansions from the input takes 
0{mr) time, the computation of the output from local expansions takes O(nr) time, and the 
computations of expansions from other expansions take 0(kr2) time, where k is the total 
number of intervals produced by the subdivision process. Assuming that m is proportional to 
n. the total execution time is 0(nr + kr2). The quantity nr + kr2 is minimized (with respect 
to k) when n/ k is equal to r. Since n/ k is proportional to the size of the lowest-level intervals, 
the minimum execution time occurs when the size of the lowest-level intervals is propor- 
tional to r. with the constant of proportion depending on the details of the computer involved. 
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4. TECHNICAL IMPROVEMENTS 

4.1. Diagonalization of Far Field to Local Matrices 

A certain amount of freedom is present in the definition of far field and local expansions: 
the results of the FMM are clearly unaffected if the far-field expansion creation matrix V; 
for an interval / is multiplied on the left by any orthogonal matrix W. its far field translation 
matrix 7} is multiplied on the right by W. and its far field to local matrices £,., for all j are 
multiplied on the right by W~. Similarly, the results of the FMM are unaffected if the local 
expansion evaluation matrix [/,■ for an interval / is multiplied on the right by any orthogonal 
matrix W. its local expansion translation matrix A/,- is multiplied on the left by H'\ and its 
far field to local matrices £,.,- for all j are multiplied on the left by W. 

We use this freedom to diagonalize one of the (usually three) far field to local matrices for 
each interval. Suppose that ELj for some intervals / and j is the matrix to be diagonalized. 
Let its singular value decomposition be denoted by £,- j-USV. Then we multiply V" on 
the right by V. and multiply £/,■ on the left by U. also changing translation matrices and 
far field to local matrices as indicated in the previous paragraph so that the results of the 
FMM are unaffected. 

Far field to local matrices are chosen for diagonalization in such a way that each expansion 
redefined by this process is redefined only once. The scheme used is as follows: each level of 
intervals is divided into blocks of four adjacent intervals: inside each block the interactions 
chosen for diagonalization are: 1 -> 3. 2 -> 4. 3 ->• 1. and 4 -> 2 (as depicted in Fig. 1). 

4.2. Splits by Factors Other Than Two 

Another modification which was made to the above FMM is to split intervals into more 
than two pieces. This clearly can be done to any interval, at any level in the tree. However, 
the only use which was made of this flexibility was to alter the top of the tree of intervals 
slightly, so as to control better the size of the lowest-level intervals in the tree. The top 
interval was split either into two, three, or five pieces: if three, its subintervals might each 

12 3 4 

FIG. 1.    Far field to local operators which are diagonalized. 
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TABLE I 
Double Precision Timings for the l/x Kernel 

Error 
Times (seconds) Memory 

Ratio (REAL*8 
N (L- norm) Init Eval Direct eval/FFT spaces) 

64 0.35477E-15 0.070 0.001 0.001 5.21 3852 
128 0.92042E-15 0.820 0.003 0.005 7.31 10407 
256 0.23512E-14 6.620 0.007 0.019 8.93 26205 
512 0.16144E-13 39.700 0.013 0.073 5.60 52263 

1024 0.21925E-13 214.710 0.031 0.730 4.16 117881 

be split into three parts, the remaining intervals in the tree all being split into two parts. This 
permits a choice of the size of the lowest-level intervals not only of n/2k for any k, but also 
of >?/(3 x 2*), n/(5 x 2*), or;i/(9 x 2k). 

5. NUMERICAL RESULTS 

For comparison against the older one-dimensional FMMs of [3. 15], the generalized 
FMM was applied to the l/x kernel: that is. the input matrix P = [pu] was given by (1). 
Timings for various numbers of points n are listed in Tables I and II for double and single 
precision (that is. with the parameter e set to 10~14 and 10~7). In all cases, the parameter 
m was set to be equal to n. the nodes {.v,} were identical to the nodes {y,}, being slightly 
perturbed equispaced nodes. All timings were performed on a Sun Sparestation 10 in double 
precision (Fortran REAL*8) arithmetic. Also included in the tables are ratios of the execution 
time of the algorithm to the execution time of a standard SLATEC FFT of size n. 

From the timings, it can be seen that the generalized FMM is similar in execution speed 
to the best previous ID FMM (that of [15]) known to the authors. It is, however, far inferior 
to the FMMs of [3. 15] in the time spent in the precomputation stage; initialization times 
for those algorithms did not exceed execution time by more than a factor of 10. whereas the 
initialization time for the generalized FMM exceeds the execution time by factors of 1000s. 
Effectively, it limits the usefulness of the procedure of this paper to problems of sufficient 
importance that the initialization data can be precomputed and stored. The following section 
discusses one such case. 

TABLE II 
Single Precision Timings for the \/x Kernel 

Error 
Times (seconds) Memory 

Ratio (REAL*8 
N (Z.; norm) Init Eval Direct eval/FFT spaces) 

64 0.25040E-08 0.040 0.001 0.001 4.74 3500 
128 0.23352E-07 0.440 0.002 0.005 5.90 8465 
256 0.19125E-06 3.580 0.005 0.018 6.13 17803 
512 0.64886E-06 22.710 0.010 0.074 4.03 36911 

1024 0.28910E-06 124.690 0.021 0.590 2.77 79407 
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6. APPLICATION TO FILTERING 

This section describes a use of the generalized FMM. in an algorithm recently pub- 
lished by Jakob-Chien and Alpert [10] for uniform resolution filtering of functions on the 
sphere. Their algorithm as a whole performs the following task: given numbers f(4>,. 9,). 
' = 1 I;j = l J. such that 

K        n 

f{(p,.ej) = Y, Y. /"TO,-.*,), VD 
n=0 m=—n 

computes numbers /(<£,. § j) such that 

A' n 

M,§j) = J2J2 fnmY,?(t,.ej). (23) 
;j=0 m~ —n 

where the functions y™ are the surface harmonics and where {0,}, {0}), {0,}. and {9j} are 
appropriately chosen grid points (see [10] for details). 

We modify only the core of the algorithm of [10], which performs the following one- 
dimensional filtering operation: given numbers fm{9l),..., f

m(9j) such that 

y-i 

/"(*/) = £/;/>>,■), i = i J, (24) 
j=m 

compute numbers fm{9x) fm(6N) such that 

A' 

/m(0-,) = £/;/»■(£,■).    / = l N. (25) 
j=m 

where ^functions Pm
n are the normalized associated Legendre functions, p, = sin 9, and 

fli = sinö/. 

Due to the orthonormality of the functions P« for fixed m and integer« > m, if the nodes 
Mi, ••.. My are Legendre nodes (nodes of the Gaussian quadrature corresponding to the 
weight function co(x) = l; see, for instance, [14]), then the coefficients fm   fm f» 
are given by m ' 7m+" '''' JN 

J 

f;" = J2fm^pn(N)yoj, (26) 

where wx,..., Wj e R are the Gaussian weights corresponding to the nodes /x,,..., ßJ. 
Combining (25) and (26) yields an equation for the entire filtering operation: 

y N 

/»(ö,.) = Y fm^)wk ]T PJ(ßk)Pj(ßi). (27) 

Equation (27) constitutes a linear transformation from fm (9,),...   fm (9,) t0 f
m (9,) 

(9N); we will refer to the matrix of this transformation as the filtering matrix and will 
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denote it by P. Using the Christoffel-Darboux formula for the associated Legendre functions 
(see, for instance. [1. Section 8.9.1]). which is 

(fi -p) Y, KWK'Aß) = e'Li(P\M(ß)P™M ~ P'x(fl)n^ (M) •        (28) 

where 

E'" = v'{n2 -m2)/(4n2 - 1). (29) 

the filtering operation can be written as 

tpi _,       £ r.*.-.^.. _ ,     £Z^^. (30l 
f.V+] ^ M;   - ßi fr] ßj   - ßi 

From (30) it immediately can be seen that the filtering matrix consists of the sum of two 
matrices of the form (1). each multiplied on the left and the right by a diagonal matrix. 
Thus, the filter can be implemented using two calls to an FMM for the l/.v kernel: this is 
the method presented in [10] (from where the above analysis is copied). It also follows that, 
if the generalized FMM of this paper is applied to the filtering matrix, the numerical ranks 
{/■/} and [pi] (see (13) and (12)) are no more than twice the corresponding ranks when the 
generalized FMM is applied to a matrix of the form (1). Thus, the filter can be implemented 
efficiently via a single call to the generalized FMM. 

Remark 6.1. If N is larger than J. the operation (30) amounts to interpolation rather 
than filtering. If the output nodes {//,-} are the Legendre nodes of order N. then the filtering 
matrix from J nodes to N nodes is. except for the multiplication of the input by Gaussian 
weights, the adjoint of the interpolation matrix from A' nodes to J nodes: this can easily be 
seen by inspection of (30). Thus, the matrices {[/,-}. {V,}. {T,}. {A/,}, and {£,-,■}, precomputed 
for the purpose of filtering, can also be used for interpolation (see Remark 3.1). 

6.1. General Nodes 

If the nodes ßX ßj are not Legendre nodes, then the coefficients /™ ffi cannot 
be computed by direct use of the formula (26). In this case, two methods of performing the 
filtering operation are available. First. Eq. (24) can be solved for the coefficients/™ /j". 
Alternatively, the function can be interpolated onto Legendre nodes, following which the 
filtering matrix for Legendre nodes (30) can be used. We use the second method to show 
that the filtering matrix for general nodes can be compressed by the generalized FMM: we 
used the first method in our implementation. 

As is well known (see. for instance. [1]), each of the associated Legendre functions P™ 
is either a polynomial or a polynomial multiplied by Vl - ,v2. depending on whether m 
is even or odd. Thus the interpolation onto Legendre nodes is a polynomial interpolation, 
which, if»; is odd. is preceded by a division by y/l - x2 and followed by a multiplication by 
V 1 - .v2. As shown in [3]. polynomial interpolation can be performed in O(n) time using 
an FMM. The filtering matrix for general nodes is the product of the interpolation matrix 
and the filtering matrix for Legendre nodes: since each of these can be compressed by a 
generalized FMM. their product also can be compressed by a generalized FMM (see [2]). 
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Remark 6.2.   In the solution of Eq. (24) for the coefficients /,"' /"•'. when m > 0. 
there are more equations than unknowns. The definition of the problem is such that there is 
an exact solution: however, numerically, this issue was dealt with by solving the equation 
in the least squares sense. 

6.2. Optimizations 

The above filtering algorithm admits several optimizations. We describe them only for 
the case when the nodes ß\ fij are Legendre nodes: however, all of them have also 
been implemented in the case of general nodes. 

First, when m is close to A', the number of coefficients /"' to be extracted is small: thus 
direct computation of (26) followed by (25) is the most efficient algorithm for the filter. 

Second, portions of the filtering matrix have negligible norm and can be discarded. This 
can be easily seen by examination of (30). using the fact that the functions P"' take on 
small values near the endpoints of the interval [—1. 1]. The fraction of the matrix which 
can be discarded increases with increasing m. to as much as eight ninths. This optimization 
is clearly not specific to the generalized FMM: it can be applied equally well to the direct 
method or to the unaltered algorithm of [10] and was applied to the direct method code 
which was used in the timings presented below. 

Third, the filter can be speeded up slightly by splitting the input function into odd and 
even parts, and filtering them separately. Each of the associated Legendre functions P™ 's 

either odd or even, with functions of successive degree n being alternately odd and then 
even. Thus the filter, applied to an odd function, yields an odd function and. applied to 
an even function, yields an even function. This implies that the filtering matrix is block- 
diagonalized (into two blocks) by the separation of odd functions from even functions. We 
address only the case in which the separation can be done trivially, that is. when each of 
the sets of nodes {/J.,} and {ß,} is symmetric around zero: for brevity of explanation, we 
further assume that N and J are even. In this case the separation of odd functions from even 
functions is accomplished by the usual formulae 

/odd(-V) = (fix) - /(-.v))/2. (31) 

/even(-Y) = (/(-*) + /(-.Y))/2. (32) 

where, as usual, each of the functions f0<n and /even are symmetric around zero and. thus, 
need only be stored at half the nodes. It is easily shown, using (30) and (31), that in the 
case that the nodes ß\ ßj are Legendre nodes, each block P — [/),,■ ] of the block- 
diagonalized filtering matrix is given by 

P£+i(£;)PA/(M/)U>,- - P'Uß^P's+M^i 
PU =  : ■ :  

ß, ~ ßi 

ßj + ßi 

where, for the block which filters even functions, the "±" sign is an addition, and, for the 
block which filters odd functions, it is a subtraction. An inspection of (33) immediately 
shows that each block is compressible by a generalized FMM. 
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Remark 6.3. Experimentally, the ranks produced by the generalized FMM when applied 
to the block-diagonalized matrix are almost identical to the ranks produced when applied 
to the original filtering matrix, except near the point fi = 0. where the ranks are slightly 
smaller in the block-diagonalized version. 

Remark 6.4. Since the generalized FMM is, when applied to matrices of this form, an 
0(n) procedure, splitting the problem into two problems of half the size does not produce 
any asymptotic improvement in execution time, although it does produce an improvement 
for small to medium-sized n. By contrast, applying this optimization to the direct method 
(as was done in the code used in the timings presented below) reduces the execution time 
by a factor of 2 asymptotically, since the direct method is 0(n2). 

6.3. Numerical Results 

Table III contains experimental results for the filter for functions tabulated at Legendre 
nodes. The filter was run for several values of J, with N = 7/2 and for each m = 1 A': 
the average initialization and execution times, the average L2 error, and the average amount 
of memory used for precomputed data (for all values of m) are tabulated. The quantity 
labeled as initialization time is. as before, the amount of time taken to compute the matrices 
which comprise the generalized FMM: this task only needs to be performed once for any 
combination of J and N. since the precomputed matrices can be stored. All figures were 
produced by an implementation in double precision (Fortran REAL*8) arithmetic on a Sun 
Sparestation 10. The table also contains the amount of time taken by the direct method and 
the ratio of the execution time of the FMM-based filter to the execution time of a standard 

TABLE III 
Filter Timings for Points Tabulated at Legendre Nodes 

Average time per m (seconds) for 
Ratio: Averaee 

Direct FMM eval        FMM init        eval/FFT error (£.:) 

Requested accuracy 10"' 

Average memory 
used 

(REAL*8 spaces) 

64 0.00014 0.00021 0.038 1.10 0.87216E-04 637 
128 0.00059 0.00063 0.173 1.73 0.21141E-03 1814 
256 0.00239 0.00172 0.861 2.25 0.35270E-03 4684 
512 0.00916 0.00406 4.528 1.64 0.55393E-03 10586 
1024 0.15601 0.00930 22.708 

Requested 

1.26 

accuracy \0" 

0.72021E-03 22799 

64 0.00016 0.00020 0.035 1.05 0.62995E-09 715 
128 0.00069 0.00068 0.145 1.84 O.89805E-08 2351 
256 0.00272 0.00199 0.749 2.61 0.20946E-07 7074 
512 0.01015 0.00545 4.480 2.21 0.35158E-07 18763 
1024 0.17623 0.01351 25.102 1.84 0.50011E-07 45001 

Requested accuracy 10 i: 

64 0.00017 0.00018 0.035 0.97 0.64733E-13 712 
128 0.00078 0.00070 0.118 1.88 0.36187E-12 2604 
256 0.00312 0.00221 0.630 2.90 0.13528E-12 8496 
512 0.01102 0.00656 3.752 2.64 0.30608E-12 26072 
1024 0.19227 0.01763 26.347 2.37 0.14238E-I1 66714 
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SLATEC FFT of size J. The direct method for which timings are listed is a modestlv 
optimized variant: the filtering matrix it used was precomputed: certain optimizations used 
for the FMM-based method were also applied to it. as described in Section 6.2. 

The filter was also implemented for functions tabulated at general nodes (Section 6.1) 
and was tested on Chebyshev nodes. The timings are almost identical, with the only major 
difference being that considerably more time was required to compute the filtering matrix: 
they are omitted. 

Remark 6.5. The implausibly large CPU times taken by the direct method for J = 1024 
are the result of the problem size exceeding the size of the cache: on the machine on which 
timings were run. only two double precision vectors of length 1024 fit in the data cache. 
Such a jump in timings is not expected to occur on most machines and. in any case, could 
be eliminated by use of a blocked matrix-vector multiplication routine. 

Figure 2 is a graph of the average numerical rank of interaction found by the filter for 
Legendre nodes (the average of the ranks {/?,•}), plotted as a function of m. for J = 1024 and 
e — 10~12. (The ranks for the filter for arbitrary nodes, when applied to Chebyshev nodes. 
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FIG. 2.    Average numerical rank of interaction, as a function of m. for J = 1024 and e = 10"l:. The dashed 
line is the theoretical bound on the rank. 
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were nearly identical.) Also plotted in Fig. 2 is the theoretical upper bound for the average 
rank, that is. twice the average rank of an FMM for the l/.v kernel of the same accuracy. 
Since most of the ranks were close to their average, the execution time of the FMM is 
roughly proportional to the average rank. (See Section 3.2.6 for an analysis of the case of 
all ranks being equal: a similar analysis applies to other variants of the ID FMM.) Thus. 
Fig. 2 provides a rough indication of the amount of speedup that is obtained by switching 
from the scheme of [10] to the generalized FMM: to a first approximation, if the average 
rank were equal to its upper bound for all m. the two schemes would be of equal speed: 
to the extent that it is lower, the generalized FMM is faster. (However, it should be noted 
that the generalized FMM requires more precomputed data and is. thus, more vulnerable to 
caching effects.) 

7. GENERALIZATIONS 

In this paper, we have presented a scheme for the efficient filtering of functions on the 
two-dimensional sphere. The approach is based on two observations. The first observation 
is that in the fast multipole method (see. for example. [3. 6]) potential kernels can be 
replaced with functions from a much more general class, using the standard singular value 
decomposition, and that this yields a fairly efficient implementation. The second observation 
is that the Christoffel-Darboux formula (28) provides a straightforward proof that the 
filtering operator on the sphere (27) can be compressed by FMM-type techniques. Both 
observations admit far-reaching generalizations, outlined below. 

1. The fast multipole method used in this paper is a special case of an extremely general 
procedure. Particular versions of this procedure have been used repeatedly (see [11. 12]): 
it is effective in all situations when the operator can be compressed by wavelet techniques. 
The following is a brief outline of the approach. 

Given a matrix to be rapidly applied to arbitrary vectors, examine it (either analytically 
or numerically), identifying large submatrices that are of low rank. When the coefficients of 
a submatrix are a sufficiently smooth function of its indices, such a submatrix is guaranteed 
to have a low rank (this is the environment where wavelets and wavelet-type techniques 
can be used): another frequently encountered situation involves submatrices that are not 
smooth, but are smooth matrices multiplied by diagonal matrices from the left and/or 
from the right (as in the case of the filtering operator (30)). Any matrix whose rank is 
much lower than its dimensionality is "compressed" by its singular value decomposition: 
applying this procedure to a sufficiently large collection of submatrices of some matrix, we 
obtain a primitive "fast" algorithm for applying it to arbitrary vectors. The scheme is further 
accelerated by recursive application of this approach. 

A strong argument can be made that the SVD of a matrix is its "optimal" low-rank 
representation: in this sense. SVD-based implementations of FMM-type algorithms are 
"optimal." Indeed, schemes have been constructed using the SVD to further compress 
multipole expansions (see. for example. [3. 9]): the resulting procedures tend to be more 
efficient than the original FMM. In addition, the FMM for potential kernels has been ac- 
celerated (dramatically so. in higher dimensions) by using diagonal forms of translation 
operators (see [7. 15]). Possible hybrid algorithms combining the latter with SVD-based 
compression of more general kernels are currently under investigation in one. two. and three 
dimensions. 
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2. Formula (28) in the present paper is a special case of the well-known Christoffel- 
Darboux formula. 

!>(*) • w(v) = -^ • ^'^•^•)-^.(y)-/>-W- 

*=o ^"+1 * ~ -v 

where pt are polynomials orthogonal with some weight function w on some interval. qk 

is the coefficient at the term xk in the polynomial pk, and n is an arbitrary positive in- 
teger (see, for example. [5, Section 8.902]). It is immediately clear from (34) that the 
algorithm of this paper can be used to evaluate rapidly the projections in spaces of poly- 
nomials on subspaces consisting of polynomials of reduced rank, in the norm associated 
with the weight w. There are a number of other projections that can be evaluated rapidly- 
using the FMM scheme of this paper, or its variants. The operators we have experimented 
with include projections on subspaces in the space of polynomials in two dimensions, 
projections on subspaces spanned by appropriately chosen Bessel functions, and several 
others. In some cases, we have determined experimentally that the scheme works, but have 
not constructed the underlying mathematics. This whole class of issues is currently under 
investigation. 
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Abstract. In the first pan of the paper we present an implementation of Milder's operator 
expansion formalism for acoustic scattering from a rough non-periodic surface. Our main 
contribution to the forward-field calculation is the development of two accurate ways of computing 
the order-zero normal differentiation operator No. The accuracy of our implementation is tested 
numerically. In the second part of our paper we apply this approach, combined with a continuation 
method, to an inverse scattering problem. The resulting scheme performs significantly better than 
the classical first-order methods. 

1. Introduction 

Scattering theory has been an active area of research for several decades. Several related 
problems belong to this field: acoustic and electromagnetic scattering form two large classes, 
which are further subdivided by assumptions on the underlying media and on the boundary 
conditions. 

In direct problems one wants to calculate the field scattered by a given object. In two 
common situations, one knows either the values of the field on the scatterer (the Dirichlet 
problem), or the values of the normal derivative of the field on the boundary (the Neumann 
problem). Direct problems are usually well posed. 

Inverse problems involve reconstructing the shape of a scatterer from the scattered field. 
These problems are ill posed: the solution has an unstable dependence on the input data. 

For the convenience of the reader, we shall outline the progress made in acoustic scattering 
in a homogeneous medium from a sound-soft obstacle. A thorough discussion of this and 
related problems can be found in the references listed in the bibliography. The list of references 
is meant to be representative, rather than comprehensive. 

The sound-soft scattering problem is characterized by the condition that the total field 
vanishes on the boundary of the scatterer. Thus, acoustic scattering is equivalent to the 
Dirichlet boundary value problem for the Helmholtz operator, with the scattered field equal 
to the negative of the known incident field. This problem is frequently solved by methods 
of potential theory. The single- and double-layer potentials relate a charge density on the 
boundary of the scatterer to the limiting values of the field and its normal derivative. The 
resulting integral equation is then solved in an appropriate function space, a common choice 
being the Lebesgue space L2. 
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If the boundary is sufficiently smooth (C2. for example) the method of laver potentials falls 
within the scope cf Fredholm theory, (see [3]). When the boundarv is merelv Lipschitz. the 
Dinchiet problem becomes much more difficult and was first studied for the Laplace operator, 
corresponding to a zero wavenumber. The boundedness of the double-layer potential as an 
operator on L~ is a deep result in real-variable theory, proved in [1] for arbitrary Lipschitz 
constants (see also [2] for a survey of related topics). Invertibihty of the double-layer potential 
in L- was first proved in [17]. and extended to other U spaces in [6]. A thorough description 
or related research, together with an extensive bibliography, is given in [9J. Extensions to 
non-zero wavenumbers and higher dimensions are obtained and described in [7. 11. 14. I5j. 
( [i-1] has an extensive bibliography). 

For the direct problem, a straightforward numerical solution of the integral equations for 
the scattered field leads to an 0(«?) algorithm. 

For the inverse problem, numerical methods must cope with the problem's inherent ill 
posedness. Some commonly used approaches require that the scattered field can be analytically 
continued across the boundary of the seauerer, which makes the problem even more unstable. 
References [4.10j contain detailed descriptions of these methods and discuss the difficulties 
associated with them. 

In this paper, we consider both the direct and inverse problems of acoustic scatterin° 
in a homogeneous medium. Following Milder [22,13], we start from the boundary integral 
equation formulation and expand the scattering amplitude in a series of readily computable 
terms. The principal tool in this formalism is the admittance operator relating the scattered 
held and its normal derivative at the scattering surface. See [18] for a thorough discussion of 
the operator expansion method and other issues in rough surface scattering. 

We adapt Milder's theory to fast numerical evaluation of the field scattered from rough 
■Lipschitz) surfaces with compact support. Other authors, see [8]. have already reported 
numerical implementations of Milder's theory. Our contribution, in the case of forward- 
scattering computations, is to implement A'0 (the order-zero normal differentiation operator) 
accurately, for the case of a compact boundary. We resolve the problems caused by the 
singularity of the symbol of N0 as a pseudo-differential operator and that of the associated 
mtegral kernel. We also implement A'2. In two dimensions, the results of our implementations 
are compared with the exact solution obtained by classical integral-equation methods. We have 
validated our method numerically for boundaries with Lipschitz constant less than -L. In the 
second part of the paper, we approximate Ns, the inversion-symmetric form of the admittance 
operator, by N0 in the forward-field equation and invert the resulting expression to solve an 
inverse scattering problem in the far-field regime. We use a continuation method with respect 
to the frequency: at each step we apply Newton's method with the starting point given by the 
output from the previous step. Thus at each stage we create an approximation to the curve 
nltered at a higher frequency. Our method recovers some nonlinear effects not accounted for 
by the classical Fourier inversion method, and works well in some situations where the linear 
term approximation fails completely. 

The paper is organized as follows. Section 2 introduces the notation used in the paper 
Section 3 contains a detailed description of Milder's formalism, as well as the algebraic 
transformations to ensure that the relevant operators always act on functions of compact 
support. Then we describe two implementations of the operator N0 and compare them The 
section concludes with numerical results for the forward-field computations. We consider an 
inverse scattering problem in section 4 and discuss our continuation method for solving it. This 
section also includes some numerical experiments in surface reconstruction. We conclude with 
a summary in section 5. 
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2. Notation and definitions 

We shall associate with the vector X = (x1.x2.x3) e R-\ the vector X = (xi.x2. -x^). x 
without subscripts will denote a vector in I2 and we shall sometimes write X as (x.xi,). Our 
scattering surface is denoted by T and is given by the graph of a ^.ipactly supported Lipschitz 
function f : R2 -*• R. The points on the surface are thus of the form (x. C(x)). The free-space 
Green's function G(X, Y) for the wavenumber k is given by the formula 

cg,y)--I"*»'*-y'» (1) 
4TT       |X-y| v ; 

for X^Y. 
We shall frequently denote G(X, Y) by G^*7)- We shall also use the following expression 

for G: 

G((x, z), (x0, zo)) = g(|(*. z) - Uo, Zo)l) (2) 

where (x,z) ^ (x0, zo) and 

«(0 = -: • ;3' 4;r   r 
Functions satisfying the Helmholtz equation will be called metaharmonic. 

3. Computation of the scattered field 

We consider the Dirichlet problem for acoustic scattering from a compactly supported 
perturbation of the plane. In subsection 3.1, we describe Milder's operator expansion 
formalism. We also discuss a modification we make to ensure that all integrations are 
performed over compact regions. The next two subsections (3.2 and 3.3) form the main 
part of our contribution to the forward-scattering computations: two implementations of the 
order-zero normal differentiation operator N0. Because of the central role N0 plays in the 
expansion formalism, we feel it is of interest to describe different ways of implementing it. 
In subsection 3.4, we compare the two methods. The last subsection (3.5) presents some 
numerical examples of computations of the scattered field. 

3.1. The operator expansion formalism 

The surface T of the scatterer is given by the graph of a compactly supported Lipschitz function 
£ : R- -*■ R. We consider the Dirichlet problem for the Helmholtz equation, i.e. we wish to 
solve 

(A+*2)<I>scat = 0 (4) 

in the region lying above I\ with the sound-soft boundary condition 

^scatlr = -«Jwlr (5) 

where <I>inc is the (known) incoming wave and 4>scat is the scattered wave. 
Following Milder, see [12, 13], we begin with the Green-Helmholtz integral for the 

scattered field: 

«Wtf) = J I -^W*scat(X) - -^(X)GR(X)j ds(X) (6) 

where the free-space Green's function is defined by 

4n\X-R\ {,) 
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Milder has modified this formula to obtain 

«JW*) = 2 /  GR(x. C(v))(Ar
sOinc)(y)dy (8) 

where Ns has a formal operator power series expansion in f. Only even powers of C occur in 
the expansion, and Ns can be written as a series of operators 

A's = Y^ N2j = ^o + N2 + ■ ■ ■. (9) 
j=o 

Already, the first two terms of this expansion provide an order-four approximation to the 
scattered potential, which surpasses the classical ones of Bragg or Kirchhoff (see [12]). The 
expressions for the operators N0 and N2 are given by the following formulae: 

M>/ = (iV*2-|>7l2/0?))V (10) 

N2f = -\N0[^[^Nol}N0f (11) 

where 

[?. NQ]g = C(N0g) - N0(!g) (12) 

/ is the Fourier transform and / is the inverse Fourier transform of /. 
Higher-order terms have simple expressions in terms of higher-order commutators, 

although their implementation gradually becomes more difficult. 
Alternatively, N0 can be viewed as a convolution operator with kernel K(x, y) given by 

K{X^--2-ü=yC (13) 
where 

\kr 1   e'* 
8(r) = ^-- (14) 

Note, that the kernel K(x, y) is singular and is not a rapidly decaying function of \x - y |. Any 
accurate numerical implementation has to overcome these problems. 

In our experiments the incident field originates at a point source located at 5, so that 

*-me(Y) = Gs(Y). (15) 

We calculate the scattered field <l>scat(/?) using N0 or N0 + N2 instead of Ns. The resulting 
approximations are correct through second and fourth order in f, respectively. However, one 
cannot use formula (8) directly, since the functions N0<t>lnc, (N0 + AS)<J>inc and GR(y, £(y)) 
are supported on the whole plane. Therefore, we modify formula (8) so that all non-local 
operators are applied to compactly supported functions and the final integration is performed 
on a compact set. First, since G^y) is metaharmonic above the boundary, (8) applied to G5(v) 
gives: •* 

Gs(R) = -2JGR{y,!(y))NsGs(y)dy (16) 

where S is the reflection of 5 across the XK-pIane. Combining (15), (16) with (8), we obtain 

*scat(/?) = -G-S(R) + 2J GR(y, !(y))Ns(Gs - G^)(y)dy. (17) 

Note that the difference Gs - Gs vanishes outside the support of f. 
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Even though Gs - Gs is compactly supported. NS(GS - G5). in general, is not. We shall 
now describe the additional modifications that are made to (17) after A7

S is replaced by AT
0. to 

ensure integration over a compact set. Defining 

<a<(*) = -G-S(R) + 2 I GR(y. !(y))NQ(Gs - Gj)(y)dy (18) 

we have 

<0*> = -GS(R) + lf GR(y. 0)N0(Gs - G-S){y) dy 

+2J(GR(y, ay)) ~ GR(y,0))N0(Gs - Gj)(y)dy. (19) 

Since A^ is a symmetric operator, and 

N0GR(y) = NQGA(y) = —*(v, 0) (20) 
dy? 

we immediately obtain 

<cat(Ä) = -Gs(R) + 2 f ^(y, 0)(GS - G,)(y) dy 

+2j(GR(y,ay))-GR(y,0))No(Gs-Gs)(y)dy. (21) 

Since both GR(y, $()')) - GR(y,0) and dGg/dy^ are compactly supported, we see that 
the evaluation of <J>°caI(#) can be reduced to evaluation of inner products of the form 
(Wo/, g) = f N0f(y)g(y) dy, where both / and g are compactly supported. 

The operator N2 requires several similar decompositions starting from (17). We omit the 
details. 

3.2. Implementation of the operator No 

As shown in the previous subsection, computation of the approximate scattered field can be 
reduced to evaluation of inner products of the form (N0f, g), where both / and g are compactly 
supported. 

A straightforward numerical implementation of N0 would consist of approximating the 
Fourier integral by a DFT, multiplying by the symbol of A^, and then applying an approximate 
inverse Fourier transform via another DFT. However, the symbol of A^ as a pseudo-differential 
operator, i^/fc2 - I ??2|, is not differentiate on the circle 1771 = k. Therefore, this direct approach 
would result in a low-order integration scheme and require a very fine uniform discretization 
in frequency to give accurate results. 

In this subsection, we demonstrate one way of resolving this problem. Our approach can 
be applied to compute other Fourier integral operators with singular kernels. In our numerical 
experiments, we approximate Lipschitz curves and surfaces by smooth functions. Thus the 
function / (and g) is smooth in addition to being compactly supported. Therefore, the function 
/ is numerically compactly supported and integrations involving products of / are effectively 
on compact subsets of the frequency space. 

Our method of computing {N0f, g) involves expressing A^ as a sum of two operators, Tx 

and To, with the following properties: 

• the symbol of Tx is continuously differentiable to a prescribed order, and 
• T2 is a convolution with a smooth function. 
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We evaiuate Tx using the FFT on the frequency side. Since the symbol of 7, is several 
times differentiate, it can be sampled relatively coarsely and still yield a good approximation. 

The convolution with the smooth kernel of T2 can be implemented efficiently by an FFT. 
where this time the FFT is not viewed as a discretization of the continuous Fourier transform, 
as it was when evaluating 7"i, but as an algebraic operation which diagonalizes the discrete 
convolution. {N0f, g) is then evaluated by integration over the compact support of g. 

We shall exhibit the decomposition of N0 in three dimensions, the result being valid in 
two dimensions with only minor modifications. 

We note (see [13]), that 

Nof{x) = H^2 / ^(^""'/Wdij (22) 

where q(rj) = y/k2 - \r}\2 is chosen to have a positive imaginary part when \r)\2 > k2. 
We fix a positive integer m and a positive real x3. We decompose N0f into two terms: 

Nof(x) = Tlf(x) + T2f(x) 

= 7^2 f i?(l)[l-ei"'ta)]V''/wd, 

+ (2^j2 fR2 ^W - f1 - ei,(,),T)e-V^)d^. (23) 

Let us first look at 7]. Its symbol, a {T\), is given by 

ff(7"i) = iq(rj)[\ -ei9("^]m 

-iq(r))x3 + + . 

= c]q
m+](r1) + c2q

m+2(r1) + .... (24) 

If mis odd, then m + 1 is even, and qm+\n) is a polynomial. Now, for j = 1,2, 

±qW=A {k2-^r=cT)i 
(25) dr]j drij ' q(r]) 

and 

—ql{r1)=cq,-2{T1)t}j. (26) 

Thus, each derivative in rj reduces the exponent of q by two. If / = 2j + 1, then q'(ri) is j 
times continuously differentiable. In the above, if m = In + 1, m + 2 = 2(« + 1) + 1, then 
cr(Ti), the symbol of T\, is n + 1 times continuously differentiable. 

As for the operator T2, we write 

One can show that 

where 

T2(f)(x)=  I  K{x-y)f{y)dy. (27) 

that 

K(x) = J2(-ir}(™y(k,x,nx3) (28) 

h(k,x.x3) = -2 )( 3  \ik(x2 + x2ri/2 - (k2x* + l)(x
2 + xh-1 

Any]x2 + x2    I 

-y,kx2{x2+x\y^2 + ix2{x2+x2)-21. (29) 
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Moreover. h{k.x. xy) is a smooth function of x for a positive A?. and thus K(x) is also smooth. 
Details of the derivation are given in the appendix. 

3.3. An alternative implementation of the operator N0 

There is an alternative way of implementing the operator No- We can regard N0 as a convolution 
with an integral kernel, which has a singularity at zero. This section sketches the details of this 
approach. The interested reader may see [16] for a thorough discussion of the relevant issues. 
In the following we derive an explicit expression for the kernel. 

The Green's function for the upper half-space G|:>0) can be expressed in terms of the 
free-space Green's function G as follows, 

Glz>o)((Jc, z), Uo, zo)) = G((x, z), (JCO, zo)) - G({x. -z), (x0, z0)).        (30) 

The Poisson kernel p for the upper half-space is the outward normal derivative of the Green's 
function 

8 
p(x, (XQ, ZO)) = - — G{z>0]((x, z), (XQ, zo)) 

dz z=0 

= 2g'(\(x, 0) - (xo, zo)l),.    ..  2° -. (31) 
|(A-,0)-(A-0,ZO)| 

The Dirichlet-to-Neumann operator N0 can be expressed by the formula 

N0 f(x) = lim -|- [  Piy, (x, z))fiy) dy. (32) 

The kernel Kix, y) of the Dirichlet-to-Neumann operator N0, for x jL y, is therefore the 
outward normal derivative of the Poisson kernel p (see also [18]), 

3 
K(x,y) = - — piy,ix,z)) 

dz 
= _2£^Z2i). (33) 

:=o \x -y\ 

The operator A^0 has been implemented via the following approximation 

No fix) % Trapezoidal sum for   / Kix, y)fiy) dy 

+c, fix)h~] + c2Afix)h + c3fix)k2h + 0(/z3) (34) 

where A is the Laplace operator in E2 and h is the side-length of an elementary grid square. 
The constants c\,c2, c3 can be computed numerically from the formula (34) using Richardson 
extrapolation, see [5], p 269. 

A similar approach applies to the two-dimensional case. The free-space Green's function 
is then given by the formula 

p(r) = -Hoikr) (35) 

and the kernel of No is equal to 

r 2      \x - y\ 

We use the following approximation: 

No fix) % Trapezoidal sum for the   / K{x, y)f(y)dy + ai(h)f(x)+a2(h)f"(x) (37) 
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where 

•"*'-5-SF(e-5^0«=-4-^V*i«= 
,M A ^,^ (38) 

02(A) = r- + ——jÄ-*- 
2TT     (2TT)

3 

and £ = 0.577 215 ... is the Euler constant. 

3.4. Comparison of the two methods 

We have described two different methods of implementing N0. The first one. expresses A'0 

as a sum of r, and T2. seems to be rather general and may prove useful for other intesral 
operators. The main idea is that a non-decaying, singular symbol is broken into two partsMhe 
first is non-decaying but smooth, while the second is singular but rapidly decaving at infinity. 
The first part can be applied on the frequency side with a relatively coarse discretization to 
functions with a fast decaying Fourier transform. Thus we can accurately evaluate 7,/ when 
/ is smooth. The second symbol is not applied on the frequency side, but as a convolution 
operator on the space side. Since this symbol is rapidly decaying, the convolution kernel is 
smooth and, again, a relatively coarse discretization can be used. Thus we can accurately 
evaluate T2f when / is compactly supported. 

The second method of implementing N0 illustrates how to calculate a convolution with 
a kernel having a singularity at 0 numerically. The method is more direct, but the correction 
coefficients have to be computed for each particular kernel. 

3.5. Numerical results 

In this subsection we present examples of numerical computations of approximate scattered 
fields. We report our results in two dimensions and compare them with the accurate values 
obtained using the classical integral-equation approach. We used the two-dimensional version 
of formula (18) to calculate 4>° „(/?), and a similar expression when Ns is replaced by N0 + N-> 
The results have been obtained with N0 implemented by the method described in section 3 3 
after verifying that both methods give nearly identical results in test cases. 

The integral-equation method requires, however, that the scatterer be bounded. When the 
scatterer is defined by a non-negative, compactly supported function f. it is possible to reduce 
the Dinchlet problem on the open domain above r to the Dirichlet problem for the exterior of 
a bounded region. To this end, we first construct a solution « to the Dirichlet problem for the 
upper half-space. The boundary values of« should match the given data away from the support 
of the curve and can be chosen arbitrarily on the support. Next'we consider the lens-shaped 
region formed by reflecting r about the plane z = 0, and the antisymmetric Dirichlet boundary 
conditions given as follows: the boundary values on the upper half of the region are equal to the 
original ones minus the values of« on the curve, while the boundary values on the lower half 
are the negatives of the corresponding values on the upper half. We now solve the Dirichlet 
problem for the resulting symmetric domain with antisymmetric boundary values Note that 
the solution vanishes everywhere on the planed = 0 outside the bounded region. The sum of 
« and the solution for the symmetric region is the solution to the original problem. 

Tables 1-3 present results of numerical simulations for a simple test curve. In all cases 
the relative errors are computed for the reduced potential <t> = cDscat + cs(R) Using the full 
potential, the relative errors are much smaller, but less meaningful. The errors are computed 
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Table 1. Relative error of the reduced potential with Ns = A'n 

Wavenumber 

Height 

1 0.5 0.25 0.125 0.0625 

n 6.72 x 10-' 1.74 x 10-' 4.77 x IO"2 1.27 x 10"2 3.27 x IO"3 

In 8.10 x 10-' 3.24 x 10"1 8.56 x IO"2 2.20 x 10"2 5.60 x IO"3 

4n 9.52 x 10-' 3.92 x 10"' 7.74 x 10~2 1.85 x 10"2 4.66 x IO"3 

8TT 1.13 x 10° 5.19 x 10"1 9.43 x 10-2 2.16 x io-: 
5.05 x IO"3 

16TT 1.24 x 10° 4.82 x 10-' 8.64 x 10~2 2.21 x 10"2 5.37 x IO"3 

32TT 1.30 x 10° 5.68 x 10-' 8.34 x 10~2 2.06 x 10~2 5.49 x IO"3 

Table 2. Relative error of the reduced potential with Ns = No + N2. 

Wavenumber 

Height 

1 0.5 0.25 0.125 0.0625 

7T 2.82 x 10-' 2.21 x 10~2 1.84 x 10~3 1.34 x io-4 
2.44 x IO"5 

In 3.81 x 10-' 2.10 x IO"2 1.76 x 10~3 1.25 x io-4 
3.28 x IO"5 

4TT 1.06 x 10° 9.09 x 10"2 5.67 x 10~3 3.72 x IO"4 5.32 x IO"5 

in 7.81 x 10"' 2.21 x 10-' 9.81 x IO"3 4.18 x IO"4 7.59 x IO"5 

\i>n 1.04 x 10° 3.64 x 10"' 9.18 x 10~3 4.47 x io-4 
2.15 x IO"4 

32;r 1.12 x 10° 5.22 x 10-' 7.98 x IO"3 5.09 x IO"4 6.76 x IO"4 

Table 3. Relative difference of the reduced potentials with N5 * Ao and Ns ~ N0 + N2. 

Wavenumber 

Height 

1 0,5 0.25 0.125 0.0625 

n 8.59 x 10-' 1.95 x 10-' 4.94 x IO"2 1.28 x io-2 
3.28 x IO"3 

In 8.68 x 10"' 3.38 x 10"1 8.69 x 10~2 2.21 x io-2 
5.62 x IO"3 

An 9.86 x 10"1 4.52 x 10-' 8.21 x 10~2 1.88 x io-2 
4.68 x IO"3 

in 1.03 x 10° 5.80 x 10"' 1.03 x 10-' 2.20 x io-2 
5.07 x IO"3 

16TT 9.81 x 10"1 6.54 x 10"1 9.42 x IO"2 2.25 x IO"2 5.39 x IO"3 

32;r 1.02 x 10° 7.70 x 10"1 9.04 x 10~2 2.09 x IO"2 5.48 x IO"3 

in the I2 norm: 

E = 
(Lfl»/-frl2) 

(E,-l*/l2) 

1/2 

(39) 

where <t>, is the reduced potential at the ith receiver obtained by the algorithm and <t>, is the 
corresponding value obtained by solving the combined field integral equations directly (see [4], 
p 67, for a thorough description). 

Note how the relative errors increase with the height of the curve, but that they remain 
nearly constant at a fixed height as the wavenumber increases. 

Table 4 records the result of a scattering experiment performed for a curve having only 
low-frequency components. The objective was to determine the dependence of the term N2 

on the wavenumber of the incident field. We find that the error depends only weakly on the 
wavenumber of the incident field once it exceeds the highest frequency of the curve. 
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Table 1. Relative error of the reduced potential with A\ : 
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A'o. 

Wavenu mber 

Height 

1 0.5 0.25 0 125 0.062.' 

Tt 6.72 > t 10-' 1.74 > c IO"] 4.77 > t I0"2 1 27 > io-: 
3.27 x io- 

In 8.10 > 10"' 3.24 > io-' 8.56 > io-2 1 20 x IO"2 5.60 x io- 
4n 9.52 > 10-' 3.92 > io-' 7.74 > io-2 

1 85 x io-2 
4.66 x io- 

8TT 1.13 > 10° 5.19 > io-' 9.43 * io-2 1 16 x 10"2 5.05 x io- 
\6n 1.24 x 10° 4.82 x io-' 8.64 x io-2 -> 21 x IO"2 5.37 x io- 
32,T 1.30 x 10" 5.68 x io-' 8.34 x io-2 2 06 x IO"2 5.49 x 10-- 

Table 2 Relative error of the reduced potential with As */v« + N2. 

Height 

Wavenumber 1 0.5 0.25 0.125 0.0625 

n 2.82 x 10-' 2.21 x io-: 
1.84 x 10-3 1.34 x IO"4 2.44 x io-5 

In 3.81 x 10-' 2.10 x io-2 
1.76 x io-3 

1.25 x io-4 
3.28 x io-5 

An 1.06 x 10u 9.09 x io-2 
5.67 x IO"3 3.72 x IO"4 5.32 x io-5 

in 7.81 x 10-' 2.21 x IO"1 9.81 x io--1 
4.18 x io-4 

7.59 x io-5 

\6n 1.04 x 10° 3.64 x IO"1 9.18 x io-3 
4.47 x IO"4 2.15 x io-4 

32?r 1.12 x 10° 5.22 x io-1 
7.98 x IO"3 5.09 x io-4 

6.76 x IO"4 

Table 3. Relative difference of the reduced potentials with Ns = A'o and Ns = A'o + AS. 

Wavenumber 

Height 

1 0.5 0.25 0.125 0.0625 

n 8.59 x 10-' 1.95 x io-1 
4.94 x io-2 

1.28 x io-2 
3.28 x io-3 

In 8.68 x io-' 3.38 x io-' 8.69 x IO"2 2.21 x io-2 
5.62 x io-3 

4n 9.86 x 10-' 4.52 x IO"1 8.21 x IO"2 1.88 x io-2 
4.68 x IO"3 

&n 1.03 x 10" 5.80 x io-' 1.03 x IO"1 2.20 x IO"2 5.07 x io-3 

I6n 9.81 x io-1 
6.54 x io-1 

9.42 x io-2 
2.25 x io-2 

5.39 x io-3 

32n 1.02 x 10u 7.70 x io-' 9.04 x io-2 
2.09 x io-2 

5.48 x IO"3 

in the I2 norm 

£ = 

/ \ 1/2 
(E,l»*-«>/l2) 

/ -      \l/2 

(E,l*il2) 
(39) 

where 4>, is the reduced potential at the ith receiver obtained by the algorithm and 4>, is the 
corresponding value obtained by solving the combined field integral equations directly (see [4], 
p 67, for a thorough description). 

Note how the relative errors increase with the height of the curve, but that they remain 
nearly constant at a fixed height as the wavenumber increases. 

Table 4 records the result of a scattering experiment performed for a curve having only 
low-frequency components. The objective was to determine the dependence of the term N2 

on the wavenumber of the incident field. We find that the error depends only weakly on the 
wavenumber of the incident field once it exceeds the highest frequency of the curve. 
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From (43) we find that 

eltr                                                              / 1 \ 
Gs(y, f (>•)) - G-S(y\ CO')) = -i2^7 «Pt-i*^! • CT2) • y] sin (*cr3C(y)) + 0 ( — .       (44) 

Similarly, 

GR(y, C(y)) - G*(y, 0) = ^— exp[-i*(a>,, a*) • y] (e^^1 - l) + 0 (^\ . (45) 

Moreover, 

e'*r                                       ( 1 \ GÄ(y.>'3) = 4      exp[   i/:cu-(v, v3)] + Ol    :j (46) 

and therefore 

3GB                      eiir                                          / 1 \ 
—■(}', 0) = \km— exp[-i*(a>,, tu,) • y] + 0   -    . 
dy-i                       \nr                                          \r2) 

(47) 

Combining (44), (45), (47) with (40), we obtain 

e2\kr       r 

* scat v^/ ""      ^ s\**/  ' ^"^3       'j   o   /     C*PL    lA-icuj   l Oi, ct»2  l ojj ■ >JSin(vA.o^; Q\ 4n2r2 JR2                                      .... 

Q2\kr       /• 

',.->->/  exPL XK\u>\^u>i) y\\c          l) 4n-r2 JR:                                                   ' 

xN0 (exp[-i*(ai, a2) • y] sin (katf)) dv + 0 [ — J . (48) 

This leads to an expression in terms of the Fourier coefficients 

e-'kr 

*SHB(/0 
% -Gs(R) + kcoT,——[sm(ka^)]'s(kcol + kou kan + km)) 

Aitlrl 

p2ikr 

~'lTT2 [(e_i^,f - 1) ^0 (exp[-i*(<r,, a2) • y] sin (ka^r))]A {kcox kcoi) 

+0 ( -4 ) • (49) 

In the special case, when the source is directly above, this formula becomes 
e2itr 

*scat(/?) % -Gs(R) + kui—^ [sin (*£)]A (koi, kco2) 
4n-r- 

e2ikr [(e-^c _^NQ (sin {kn)y {kwx f kc0i) + 0 |H (50) 
4^2r2 

Similarly, for the two-dimensional case, one can derive the following formula: 
e2i*r 

QscAR) ^ -Gs(R) + icoi— [sin (fcC)]A (Jta>i) 
2;rr 

e2itr 

2;rfcr [(e_i*^ - 1) ^0 (sin (*0)]A (*<»i) + O f 1) . (51) 

Although we used expression (51) in our numerical experiments, we would like to mention 
the following formula because of its appealing simplicity. For small elevations £■£, the sines 
and the exponentials can be expanded in powers of their arguments, yielding 

*scat(*) % -G-S(R) + tt«>3— (? - CJV0C)A (*«,) + 0 I — j . (52) 
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A similar result holds in three dimensions. 

Let us now describe the geometric setup in two dimensions. The function ( is supported 
on the interval [-1. 1]. The receivers at which we measure the scattered field are located on a 
semicircle of radius 1(P in such a way that their projections on the .v-axis are equispaced The 
number of receivers is [2k/nJ. The source is located at the point (0. 105). 

Our reconstruction of ? proceeds as follows. 

• Step 0. We set the initial approximation to zero. 

• Step 1. We choose an initial value for the wavenumber k and seek an approximation to 
the function f by a trigonometric polynomial of degree not exceeding it. Substituting 

ft. 
c„e 

n=~k 
(53) 

in (51), we solve for the coefficients cn using Newton's method with the previous 
approximation as the starting point. The resulting solution represents the Fourier 
coefficients of? corresponding to the frequencies not exceeding k. 

• Step 2. We increase k to a new value *' (*' = 2k is a convenient choice) We repeat 
step 1 with the previous approximation to ? as our starting point. More precisely we 
approximate ? by the Fourier series £*=_t. Cne"" and determine the coefficients cn by 
solving (51) using Newton's method starting from the previous result: 

c„ = 
for |n | ^k 

for \n\ > k (54) 

where the coefficients cn come from step 1. 

We now iterate step 1 and step 2 until we reach a prescribed frequency *0. For a complete 
reconstruction we need to choose *0 larger than the highest frequency of the curve 

We have observed experimentally that the continuation method described above converts 
for a larger class of surfaces than Newton's method starting at f = 0. 

littered curve 
second order reconstruction 

first order reconstruction 

-0.8 -0.6 -0,4 

Figure 1.   Reconstructions of the curve filtered at * = n.   Filtered curve 
reconstruction ; first-order reconstruction  

-; second-order 
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4.2. Numerical results 

453 

Figures 1-6 illustrate the continuation method as described in the previous subsection. The 
solid curve in the final figure is the unknown curve to be reconstructed. The first figure 
shows a filtered version of that curve at wavenumber n. and the reconstruction carried out 
using Newton's method starting from the zero curve. The second-order reconstruction is 
plotted together with the 'classical' linear reconstruction. The output of the second-order 
reconstruction is then the starting point for the next stage, where the wavenumber doubles (and 
so does the number of receivers on the semicircle). We proceed successively, as outlined in 
section 4.1, until we reach the wavenumber that is above the highest frequency of the curve. At 
each stage we attempt to reconstruct the true curve filtered at the corresponding wavenumber. 
The final reconstruction using the second-order method with continuation approximates the 

littered curve 
secdi^j order reconstruction 

''order reconstruction 

Figure 2.  Reconstructions of the curve filtered at k = 2TT.  Filtered curve 
reconstruction ; first-order reconstruction  

second-order 

littered curve ■ 
^    second order reconstruction ■ 

first order reconstruction 

Figure 3.  Reconstructions of the curve filtered at k ~ 4rr.  Filtered curve 
reconstruction ; first-order reconstruction  

second-order 
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-0.01- 

-0.02 
-1 

tittered curve   
second order reconstruction    

tirst order reconstruction 

-0 8 -0 6 -0 4 -0 2 

Figure 4.  Reconstructions of the curve filtered at k = In.  Filtered curve 
reconstruction ; first-order reconstruction  

second-order 

littered curve — 
second order reconstruction — 

first order reconstruction 

Figure 5. Reconstructions of the curve filtered at A: = 16^. Filtered curve 
reconstruction ; first-order reconstruction  

second-order 

curve very well. The first-order reconstruction is good for the first two stages but then moves 
further and further away from the actual curve. 

5. Conclusions and summary 

We present an implementation of Milder's operator expansion algorithm for acoustic scattering 
with Dirichlet boundary condition. We modify the integral used by Milder to ensure that 
all integral operators are applied to compactly supported functions and integrations are 
performed on bounded sets. Our main contribution to the forward-field calculation has been the 
development of two accurate ways of implementing the N0 operator. We have also combined 
Milder's formalism together with a continuation method in frequency to reconstruct accurately 
rough boundaries with rather large heights.   We have presented examples for which our 
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curve 
second order reconstruction ■ 

tirst order reconstruction 

-1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 

Figure 6. Reconstructions of the original curve with k = 327r. Original curve - 
reconstruction : first-order reconstruction  

;second-order 

method using second-order terms works, but for which the first-order reconstruction fails. 
Our numerical results suggest that the higher-order approximation errors from incident fields 
having higher wavenumber than the frequency content of the boundary tend to remain nearly 
constant as the wavenumber of the incident field increases. 

A scheme for the fast evaluation of the Helmholtz potentials can be added to accelerate 
the algorithm. Such methods are currently being developed by several authors. 
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Appendix 

In this appendix, we provide a detailed derivation of the kernel of the convolution operator T2 

defined in section 3.2. 
From (23) we obtain 

T2(f)(x) = —— f    f  iq(n){l - [\-c^'>^]m}e-iy-r'cix-''f(y)dydt1 

i/R2 {ITT )-  JR2 

=   I   K{x-y)f{y)dy (55) 

where 

K<x) = 7T-TT [ itfMU - [1 - tiq(n)Xi]mWx'r'dri 
(2.7T)- JR2 

= ^/^>f>>r'(l) iqWnxi   ix-ri ex-i drj 
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= D-l)"+'(^)A(it.x.i.xO 

with 

h(k,X,X3)=  —\^—'-   f    e»-1eiqWxy^L 
(2JT)- dxr JR: q(ri) 

We shall use the spectral form of the free-space Green's function, see [13] 

,JÜL 
90?) 

exp[ikjx2 + x2] i 
h(k,x.x,) = -2 V ■   \ik(x2

+xlr^-ik2x2+lXx2+x2)-i 
4nJx2+x2    l 

-yikx>(x2 + xlr*/2 + 3x2(x2 + x2)-A. 
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exp[ik\\X - Y\\] _ i     1       f dn 

4^||x-y||    ~ lärfb       x ~ y)'n + iqmx* ~ -V3'W • (59) 

(60) 

Again, since x3 is positive, setting Y = 0, we obtain 

exp[i*y*2+x?]      i     1      r d 

where JC
2
 = A:

2
 + x|. Substitution of (60) into (58) gives 

After a straightforward calculation, we obtain: 

(62) 
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RAPID EVALUATION OF NONREFLECTING BOUNDARY 
KERNELS FOR TIME-DOMAIN WAVE PROPAGATION* 

BRADLEY ALPERT+, LESLIE GREENGARD*, AND THOMAS HAGSTROM§ 

Abstract. We present a systematic approach to the computation of exact nonreflecting bound- 
ary conditions for the wave equation. In both two and three dimensions, the critical step in our 
analysis involves convolution with the inverse Laplace transform of the logarithmic derivative of a 
Hankel function. The main technical result in this paper is that the logarithmic derivative of the Han- 

kel function Hv (z) of real order v can be approximated in the upper half z-plane with relative error 
£ by a rational function of degree d ~ 0(log \v\ log i + log2 |i/| + |i/|_1 log2 -) as \u\ — cc, e — 0. with 
slightly more complicated bounds for v = 0. If A' is the number of points used in the discretization of 
a cylindrical (circular) boundary in two dimensions, then, assuming that E < 1/A', 0(Arlog Arlog -) 
work is required at each time step. This is comparable to the work required for the Fourier trans- 
form on the boundary. In three dimensions, the cost is proportional to N2 log2 A' + Ar2 log N log - 
for a spherical boundary with A'2 points, the first term coming from the calculation of a spherical 
harmonic transform at each time step. In short, nonreflecting boundary conditions can be imposed 
to any desired accuracy, at a cost dominated by the interior grid work, which scales like N2 in two 
dimensions and Ar3 in three dimensions. 

Key words. Bessel function, approximation, high-order convergence, wave equation, Maxwell's 
equations, nonreflecting boundary condition, radiation boundary condition, absorbing boundary con- 
dition 

AMS subject classifications. 33C10. 41A20, 44A10, 44A35, 65D20 

PII. S0036142998336916 

1. Introduction. A longstanding practical issue in numerical wave propaga- 
tion and scattering problems concerns the reduction of an unbounded domain to a 
bounded domain by the imposition of nonreflecting boundary conditions at an arti- 
ficial boundary. We restrict our attention to "time-domain" calculations, for which 
it is well-known that the exact nonreflecting conditions are global in both space and 
time. While the problem has been widely studied (see Givoli [1] for an overview), 
the boundary conditions used in practice typically introduce serious numerical arti- 
facts. An exception is the method developed by Ting and Miksis [2], which relies 
on Kirchhofs formula to solve the wave equation in an exterior domain, but which 
is computationally expensive. The two most common approaches are based on the 
construction of local differential boundary conditions [3, 4] or absorbing regions [5, 6], 
but neither provides a clear sequence of approximations which converge to the exact, 
nonlocal conditions.  Recently Sofronov [7] and, independently, Grote and Keller [8] 
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have developed and implemented an integrodifferential approach for three-dimensional 
calculations using a spherical boundary and have demonstrated that high accuracy 
can be achieved at reasonable cost. In their schemes, the work is of the same order 
as the explicit finite difference or finite element calculation in the interior of the do- 
main. For Ar2 points on the spherical boundary. 0(N3) work is required. Hagstrom 
and Hariharan [9] have shown that these conditions can be effectively implemented 
using only local operators, but at the cost of introducing a large number of auxiliary 
functions at the boundary. A somewhat more general, but closely related, integral 
formulation is introduced in [10. 11. 12]. The fundamental analytical tool in the latter 
papers is what we refer to as the nonreflecting boundary kernel which is the inverse 
Laplace transform of the logarithmic derivative of a Hankel function. 

In this paper, we prove that the logarithmic derivative of a Hankel function can be 
approximated as a ratio of polynomials of modest degree, so'that its inverse Laplace 
transform can be expressed as a sum of exponentials. Our analytical approach com- 
bines an extension of the Mittag-Leffler theorem with the approximation techniques 
of the fast multipole method. In particular, Theorem 4.1 presents an exact represen- 
tation of the logarithmic derivative as a sum of poles plus a continuous density on the 
branch cut. Theorem 4.6, which is preceded by several technical lemmas, presents a 
reduced, approximate representation. 

using this approach, the cost of computing the nonreflecting boundary condition 
is comparable to that of a fast Fourier or spherical harmonic transform. For two- 
dimensional problems, 0(N log N log ±) work is required at each time step, where N is 
the number of points used in the discretization of a cylindrical (circular) boundary. In 
three dimensions, the cost is proportional to Ar2 log2 JV + N2 log N log ± for a spherical 
boundary with N2 points. The first term comes from the calculation of the spherical 
harmonic transform using the fast algorithm of [13, 14]. 

Other authors, including Nedelec [15] and Cruz and Sesma [16], have studied 
the logarithmic derivative of the Hankel function, based on a variety of techniques. 
In this paper we present a sum-of-poles representation for the logarithmic derivative 
of a Hankel function of real order v bounded away from zero with accuracy e for 
argument, z, satisfying Im(r) > 0. The number of poles is bounded by 0{\og\v\ • 
log \ +log \v\ + \i/\~l log2 i). A similar representation for v = 0 is also derived which 
is valid for Im(r) > 77 > 0 requiring O (log I • log ± + log ± • log log ± + log ± • log log ±) 
poles. v v 

In section 2. we introduce nonreflecting boundary kernels. In section 3 we collect 
background material in a form convenient for the subsequent development. Section 4 
contains the analytical and approximate treatment of the logarithmic derivative, while 
a procedure for computing these representations is presented in Section 5. The re- 
sults of our numerical computations are contained in section 6, and we present our 
conclusions in section 7. 

2.  Nonreflecting boundary kernels. Let us first consider the wave equation 

(2.1) Utt=c2V2u 

in a two-dimensional annular domain p0 < p < Pl.   The general solution can be 
expressed as 

oo 

(2.2) u{p,d>,t)=   Y,   ^^1[an(s)Kn(ps/c) + bn(s)In(ps/c)}(t), 



1140        BRADLEY ALPERT. LESLIE GREENGARD. AND THOMAS HAGSTROM 

where Kn and /„ are modified Bessel functions (see, for example, [17, section 9.6]). 

(2.3) 

Kn(z) = ^H^(ze^).        In(z) = i-nj^ze"/*) —7T < argr < —. o     -   9 

the coefficients an and bn are arbitrary functions analytic in the right half-plane. C 
denotes the Laplace transform 

(2-4) £[/](*)=  re-stf(t)dt, 
Jo 

and C~l denotes the inverse Laplace transform 

(2-5) C~1[g)(t) = ±: f
X estg(s)ds. 

Likewise, for the wave equation in a three-dimensional domain r0 < r < r1; the 
general solution can be expressed as 

(2.6) 
DC n 

n= — oc m— — n 

Kn+h{rs/c) In+it(rs/c) 
anm(s) f==— + bnm(s) 

\/rs/c \frsfc 
(t). 

If we imagine that p = p1 (or r = rx) is to be used as a nonreflecting boundary, 
then we can assume there are no sources in the exterior region and the coefficients 
bn(s) (or bnm(s)) are zero. Let us now denote by un(p,t) the'function satisfying 

(2.7) 

Then 

£[un](p. s) = an(s) Kn(ps/c). 

£ r d 
dp    J 

(p,s) = an(s)- - -K'n(ps/c) 

(2.8) 

so that 

(2.9) 

where * denotes Laplace convolution 

(2.10) 

= C[un]{p,s)- (- 
\c 

s K(ps/c] 

d 
—un(p,t) = un(p.t) * C  l 

c Kn(ps/c) 

s K'n{ps/c 
c Kn(ps/c) (t), 

(f*9)(t)=   f   f(T)g(t-T)dT. 
Jo 

The convolution kernel in (2.9) is a generalized function.   Its singular part is easily 
removed, however, by subtracting the first two terms of the asymptotic expansion 

(2.11) s K'n{ps/c) s      1 
-     —- + O is 

c Kn(ps/c) 2p 
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From the assumption un{p,t) = 0 for t < 0 and standard properties of the Laplace 
transform we obtain the boundary condition 

(2.12) 

where 

(2.13) 

— Un(PJ) + -—un(P.t) + 2~Un (/>•«) = J   <Tn(t ~ T) Un(P. ~) dr. 

On{t) = C -1 s  ,   1    ,  sK'n{ps/c) 
c  '  2p  '  cKn{ps/c) 

which we impose at p — px. 

Remark. The solution to the wave equation in physical space is recovered on the 
nonreflecting boundary from un by Fourier transformation: 

(2.14) 
A72-1 

u{pi,<p,t)=     J2    un(Pl.t)einc 

n = -N/2 

assuming N points are used in the discretization. 
The analogous boundary condition in three dimensions is expressed in terms of 

the functions unm{r.t) satisfying 

(2.15) £Kim](r,s) =anm(s) 
Kn+i(rs/c) 

\/rs/c 

After some algebraic manipulation, assuming unm(r,t) = 0 for t < 0, we have 

(2.16) ^unm{r.t) + -—unm{r,t) + -unm(r,t)=  \   tjn(t - r) unm(r,T) dr. 

where 

(2.17) u)n{t) = C -l S 1 SKn+l(rS/C) 
- -| 1 2  
c      2r      cKn+1(rs/c) (t), 

which we impose at r = rx. 
Note that the boundary conditions (2.12) and (2.16) are exact but nonlocal, since 

they rely on a Fourier (or spherical harmonic) transformation in space and are history 
dependent. The form of the history is simple, however, and expressed, for each sepa- 
rate mode, in terms of a convolution kernel which is the inverse Laplace transform of 
a function defined in terms of the logarithmic derivative of a modified Bessel function 

(2.18) 
dz Ku(z) 

Remark. In three dimensions, the required logarithmic derivative of Kn+i(z) is 
a ratio of polynomials, so that one can recast the boundary condition in terms of a 
differential operator of order n. The resulting expression would be equivalent to those 
derived by Sofronov [7] and Grote and Keller [8]. 

The remainder of this paper is devoted to the approximation of the logarithmic 
derivatives (2.18) as a ratio of polynomials of degree O(logy), from which the convo- 
lution kernels an and wn can be expressed as a sum of decaying exponentials.  This 
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representation allows for the recursive evaluation of the integral operators in (2.12) 
and (2.16). using only O(logn) work per time step (see [18]). We note that, by Par- 
seval's equality, the L2 error resulting from convolution with an approximate kernel 
is sharply bounded by the Lx error in the approximation to the kernel's transform. 
Precisely, approximating the kernel B(t) by the kernel A(t) we find 

- \A — B\    . 
\\A * u - B * u\\2 = \\Au - ßü||   < sup '   |A|     \\Bü\ 

1^4 -B\ 
B\ 

\Ä -B\ 
(2-19) =sup '   , .,   l\\B*uL,      " 

5 £ ziK. LD 

where we assume that Ä, B, and ü are all regular for Re(s) > 0. For finite times we 
may let s have a positive real part. 77: 

(2.20, \\A,u-B,u\\LAOT)<e,r^JÄ^^B,ALAoTy 

We therefore concentrate our theoretical developments on L^ approximations. For 
ease of computation, however, we compute our rational representations by least 
squares methods. These do generally lead to small relative errors in the maximum 
norm, as will be shown. 

Since Hankel functions are more commonly used in the special function literature, 
we will write the logarithmic derivatives as 

(2.21) - log Kv(z) = -f log H™ (z e^) = i ""}*' 
dz dz Hl1](ze™/2 

We are, then, interested in approximating logarithmic derivative of the Hankel func- 
tion on and above the real axis. 

3. Mathematical preliminaries. In this section we collect several well-known 
facts concerning the Bessel equation, the logarithmic derivative of the Hankel func- 
tion, and pole expansions, in a form that will be useful in the subsequent analytical 
development. 

3.1.  Bessel's equation. Bessel's differential equation 

/0 1N d2u      l du      (       u2\ 
(3-1} d? + -zTz + (l-l?)U = 0> 

for v € 1, has linearly independent solutions H(J] and HL
2)

 , known as Hankel's 
functions. These can be expressed by the formulae 

(3.2) HW{z)=
J-^)-e-VniMz) g(2) J-v[z)-e™Jv{z) 

ism{vir) ' " isin(^Tr) 

where the Bessel function of the first kind is defined by 

(3.3) uz) = C-yjr   (-'2/4)fc 

k=0MT(v + k + l)' 
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The expressions in (3.2) are replaced by their limiting values for integer values of v. 

(See. for example. [17. section 9.1].) For general v, the functions Hll) and H[
u
2] have 

a branch point at z = 0 and it is customary to place the corresponding branch cut 
on the negative real axis and impose the restriction -r < argz < TT. We shall find 
it more convenient, however, to place the branch cut on the negative imaginary axis, 
with the restriction 

(3.4) _!<argz<y. 

Hankel's functions have especially simple asymptotic properties. In particular (see. 
for example, [19, section 7.4.1]). 

(3.5) Hl1Hz)~£y/\il>-™/*-«wf^i*Atp.,    '■ 
fc=0 

(3.6) HP\z) ~ (A) 1/2
e^—Z2-./4) f .k M^ f _ 1 + . _ K 

\~zl *-^        z*    \     2z z) 
k=0 

as z —> oo, with -TT + 6 < arg z < 2TT - 8, where 

(3.7) (4^-l2)(4,2-32)...(4,2-(2fr-l)3) 
k\8k 

and the branch of the square root is determined by 

(3.8) zl/2 = eU°gM + «arg2)/2_ 

Finally we note the symmetry 

(3-9) H^{z)=e-^'H^l(z). 

We also make use of the modified Bessel functions K„{z) and Iv(z). These are lin- 
early independent solutions of the equation obtained from (3.1) by the transformation 
z — iz. Their Wronskian satisfies 

(3-10) K„(z)K(z) - K(z)L(z) = z-\ 

Moreover we have for positive r [20] 

(3.11) H^ire-W) = le-™/*(e""'Kl/(r) 4- mlv{r)). 

Asymptotic expansions of Ku(r) and I„{r) for r small and large are also known [17, 
sections 9.6 and 9.7]. For real r and v > 0 we have 

(7-log-, i/ = 0, 
(3-12) ff„(r)~ lTH     1 _„ r-0, 

(3.i3)       w-^iLy, 

(3.14) Kv{r)~J?-e 
V lr oo, 

(3.15) /„(r)^/*--, r^oo. 
27rr 
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Here -. = 0.5772... is the Euler constant. 
Finally, we note the uniform expansions of Bessel functions for v —> oc given in 

[17]. For Hankel function and derivative we have 

(3.16) gW(^)^2e-"*/3f-ig-V/4Ai(e2"7V/30 v    K      ' Vl - Z2 I 1/1/3 

,,,, 4e-2'"/3 /    AC   N-i/4Ai'(e27ri/3;/2/3^ 
(3.17) H^ (vz) ~ ?-— (_iL_) [\2/3      Cj 

as v — oc. where we restrict z to |arg(z)| < TT/2 and define 

(3.18) ^C
3/2 = log1 + vT3?? - VT^7\ 

o z 

Here, Ai(t) denotes the Airy function [17. section 10.4]. Note that ( = 0 when z = 1. 
Large f approximations of the modified Bessel functions for real arguments, r, are 
given by 

(3.19)    Ku{vr)~J--  /„(„.)„*_!:  „^ 

where 

(3.20) 0(r) = log  + VTT^. 
1 + \/l +r2 

3.2.  Hankel function logarithmic derivative.  We denote the logarithmic 
derivative of H^ by G„, 

(3-21) G,(z) = ^logH^(z) = ^l. 
dz Hll){z) 

The following lemma states a few fundamental facts about G„ that we will use below. 
LEMMA 3.1.   The function Gv(z), for v £ R, satisfies the formulae 

(3-22) GL„(z) = G„(z), 

7T 7T 
(3-23) Gv(ze"i) = Gu(z)e*i, ~ < argz <     , 

z z 

w/iere z = |z[e~larg2 is tfie complex conjugate of z.   Asymptotic approximations to 
Gv are 

(log(ze-"/2/2)+7)-1
z-i+0(z)i    J/ = 0j 

(3.24) CM-<-'"!':!:of**1"?- »<H<I.   _0, 
M*   1+0(zlogz), |z/| = l, 

HH-^ + oCO. H>i, 
where 7 z's i/ie £wZer constant, 

(3.25) G,(„~f;^(-^ + i_^/f;i^| 
/c=0        ~        ■      — z, .   k=Q 

00, 
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Re(z) 

FIG. 3.1.  Curve z(0 defined by (3.18) near which the scaled zeros of H^ lie (see Lemma 3.2;. 

The branch cut of Hu     is chosen (3.4) on the negative imaginary axis. 

where Ak{u) is defined in (3.7), and 

2e~W3^    4C    ^-i/2Ai'(e
2^/y/3C) 

1-zV 
(3.26) Gv{vz. 

z/i/32   Vl_22y Ai(e2ir'/32/2/3C) ' 

where Q is defined in (3.18). Furthermore, the {unction uy defined by 

(3-27) uu{z) = zGv{z) 

satisfies the recurrence 

OG, 

(3.28) M2) v - 1 - u„_i(z 

Proof. Equations (3.22) and (3.23) and asymptotic expansion (3.24) follow im- 

mediately from the definitions (3.2) through (3.4) of J„ and Hl1]. The asymptotic 
expansion (3.25) follows from (3.5) and (3.6), while (3.26) is a consequence of (3.16) 
and (3.17). The recurrence (3.28) from standard Bessel recurrences [17, section 
9.1.27]. D 

The zeros of HI
X
\Z) are well characterized [17, 20]; they lie in the lower half z- 

plane near the curve shown in Figure 3.1. obtained by transformation [21] of Bessel's 
equation. In terms of the asymptotic approximation (3.16), this curve corresponds to 
negative, real arguments of the Airy function. 

LEMMA 3.2. The zeros hl/A, /i„.2,... of Hll\z) in the sector -TT/2 < arg z < 0 
are given by the asymptotic expansion 

(3.29) K.n ~i/2(Cn)+0(^_1), 
V 

n l,...,LI"l/2 + l/4j, 

uniformly in n, where C„ is defined by the equation 

(3.30) = P-2T"/3„-2/3 Cn = e a„ 

z(Q is obtained from inverting (3.18), and an is the nth negative zero of Airy function 
Ai.    The zeros in the sector IT < arg2  < 3TT/2 are given by -Kj, ~K~2, In 
particular, 

(3-31) Vi-v + e-^/^/^'/Voi), 

where -ax = 2.338 .... 
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3.3. Pole expansions. A set of poles in a finite region defines a function that 
is smooth away from the region, with the smoothness increasing as the distance in- 
creases. This fact leads to the following approximation related to the fast multipole 
method [22. 23]. 

LEMMA 3.3. Suppose that qi,...,qn are complex numbers and Zi,...,zn are 
complex numbers with \z3■ | < 1 for j = 1,..., n.  The function 

(3.32) f(z) = Y, ~^- 

can be approximated for Re(z) = a > 1 by the m pole expansion 

(3-33) gm(z) = Y, ~zr 
771-1 

Z — U)1 

j=0 

where LU = e
2,"/m is a root of unity and ■jj is defined by 

771— 1 

(3.34) 7j = I Y »-» Y ,     Qkzk , j =0,...,m-l. 
m *—' *—' 

;=o k=i 

The error of the approximation is bounded by 

^ l/W-^)l^(?^7^IWI. 
2(a2 + l) 

(am-l)(a-l)2 

wh ere 

(3.36) F(z) = Y-M~. 
Z — Z 

3 = 1 

Proof. We use the geometric series summation 

771—1 
1        ■ \K   v vm     1 (3.37) -L- = y JL_ + v_ 

Z — V       ^-^ zk+l       z fc=0" -     --v 

to obtain 

m—l 

fc=0 j=l j=0 

1   /^o,.*,."*     ^-v,-^'"1 
(3.38) |    l  (y*izi y 1i<* 

zm V Z^ z _ 2 Z^   , _ . 
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All m terms of the first summation vanish, due to the combination of (3.34) and the 
equality jyj'Jo ^k = mho- For the error term we obtain 

a ■ z m 

E^ 
3 = 1 3=1 

\°JZ3 1 ^E l9j! 

3 = 1 1 - Zj/Z 

|Z|(Q_1)2Z-      1+a-2 i)22-  1+fl-2   ^r^Yy.üMEr m\ 
3=1 o=l ;/~ 

(3.39) 

and 

(3.40) 

< a2 + l 
(a-I)2 

19,1 Q2 + l 

(a-1)2 1^00 

m-1 
7j^

m 

E^ 
7 = 0 

2 — WJ 

m-1 

E V 
z — u)i = \9m{z)\ 

Moreover, repeating the computations of (3.39). we find 

(3.41) l/(*)l < ^±-2\F{z)\. 
(a-D: 

Now the combination of (3.38)  through (3.41) and the triangle inequality gives 
(3.35). D 

Inequality (3.35) remains valid if we assume instead that \ZJ\ < b and Re(z) = 
ab > b, for arbitrary b e R, 6 > 0; this fact leads to the next two results whose proofs 
mimic that of Lemma 3.3 and are omitted. 

LEMMA 3.4.   Suppose n,p are positive integers, qi....,qn are complex numbers, 
and z\ :„ are complex numbers contained in disks Dx,..., Dp of radii ru...,r 
centered atcu...,cp, respectively.  The function 

(3.42) ^) = £TZT 
j=i 

can be approximated for z satisfying Re{z - c,) > ar, > rz for i = 1,... ,p by the m ■ p 
pole expansion 

(3.43) 

where 7^ is defined by 

(3.44) 

P    m-1 

•w = EE t{U!-{c'+r-u'y 

m-1 

1=0 

i = 1, 
i = 0,. 

urctfi {/,• = Uj<iDj.  The error of the approximation is bounded by 

1 ^ ;| ~ (a™-l)(a-l)2' 

m-1, 
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where 

(3.46) F{z) = f^-^-. 
3=1 Z ~ Zj 

LEMMA 3.5. Suppose that the discrete poles of Lemma 3.4 are replaced with a 
density q defined on a curve C with C C Up = Di U • • ■ U Dp, specifically 

(3-47) f{z)=[l(£LdC 
Jc z - 4 

which is finite for z outside Up, and that gm is defined by (3.43) with 7^ defined by 

1     rn~l r I 

m   7^0 JcnWAU.-!) V     n      J J=0,..., 771-1, 

wrf/i [/, = Uj<iDj. Then the bound (3.45) ZioWs as 6e/ore. Lemma 3.3 enables us 
to approximate, with exponential convergence, a function denned as a sum of poles. 
The fundamental assumption is that the region of interest be "separated" from the 
pole locations. The notion of separation is effectively relaxed by covering the pole 
locations with disks of varying size in an adaptive manner. In Lemmas 3.4 and 3.5, 
we use this approach to derive our principal analytical result. 

4. Rational approximation of the logarithmic derivative. The Hankel 
function's logarithmic derivative Gv(z) defined in (3.21) approaches a constant as 
z -> oc and is regular for finite z e C, except at z = 0, which is a branch point, and at 

(11 
the zeros of Hv (z), all of which are simple. We can therefore develop a representation 
for Gv analogous to that of the Mittag-Leffler theorem; the only addition is due to 
the branch cut on the negative imaginary axis. It will be convenient to work with 
uu(z), defined in (3.27). for which approximations to be introduced have simple error 
bounds. 

THEOREM 4.1. The function uv{z) = zGu{z), where Gv is defined for (/6R6y 
(3.21) with the branch cut defined by (3.4), is given by the formula 

(4.1) „(,) - fa - 1 + £ -Üa- - 1 r MM--")) ir 
2 ^—^   7. — h... _ 7!-?    /„ ir -J-  v 

n = l 

z — hvn      ixi J0 ir + z 

for z £ C not in {0, hVt\, /i„i2, • • •, /ii/.Ar„} and not on the negative imaginary axis. 

Here /i„,i, ^.2, • • •, K.NU denote the zeros of Hil\z), which number N„. 
Proof. The case of the spherical Hankel function, where v = k + 1/2 for k € Z, 

is simple and we consider it first. Here uv{z) is a ratio of polynomials in iz with real 
coefficients, which is clear from the observation that ul/2{z) = iz-1/2 in combination 
with the recurrence (3.28). Hence 

(4-2) Uv{z)=p(z) + J2-^-, 
71=1   Z hv>n 

where p is a polynomial and a„,n is the residue of uv at h^n, 

(4-3) a„.n =    lim   (z - hv_n) uu(z) = hu,n 
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FlG. 4.1.  Integration contour Cm, with inner circle radius l/m and outer radius m + 1. 

by l'Höpital's rule. We see from (3.25) that 

1 (4.4) 

whence 

(4.5) 

Uy[Z)    ~    IZ   ~    -+0{ --h oc. 

P{z) 2' 

Noting that uu{iy) € R for y G R. and combining (4.2). (4.3). and (4.5). we obtain 
(4.1). 

We now consider the case v ^ A;+1/2. k € Z, for which the origin is a branch point. 
For m = 1,2,..., we define Cm to be the simple closed curve, shown in Figure 4.1, 
which proceeds counterclockwise along the circle C„l] of radius m + 1 centered at the 
origin from arg 2 = -TT/2 to 3-/2, to the vertical segment z = re3?ri/2,r e fl/m,m+ll 
to the circle Cm" of radius l/m centered at the origin from arg 2 = 3TT/2 to -7r/2. to 
the vertical segment z = re-"'/2, back to the first circle. Since none of the zeros of 
Hu lies on the imaginary axis, Cm encloses them all if m is sufficiently large. For 
such m, and z £ C inside Cm with Hll\z) ^ 0, the residue theorem gives 

(4.6) 
27"' Jcm C - 

(0 
c?C = uv{z) + ^ 

n=l 

We now consider the separate pieces of the contour Cm. For the circles C„l] and c£], 
we use the asymptotic expansion (4.4) about infinity and (3.24) about the origin to' 
obtain 

(4.7) lim   —: 
m — oc 2.1\i 

MO dQ = iz lim ±-[ 
2TTI Jcr. 

MO 
) Q-z 

d( = 0. 
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FlG.  4.2.   Plot of Re(u„(re   *'/2)),  containing the zero crossing,  and Im(tj1/(re
_'ri/2)) , fo 

u = 2 and r £ [0.3], 

Now exploiting the symmetry Ul/(re3vi/2) = u^re'^l2) from (3.23) for the vertical 
segments, we obtain 

(4- lim MC) ,r    .     i 
-   „   .   ,      — at = iz \- 
cc2m Jc    C- z 2      2TTI 

1_   r°° 2ihn(uv(re-iri/2)) 
o (re-™/2 - z) e   "Wdr, 

which, when combined with (4.6), yields (4.1) and the theorem. D 
The primary aim of this paper is to reduce the summation and integral of (4.1) 

to a similar summation involving dramatically fewer terms. To do so, we restrict z 
to the upper half-plane and settle for an approximation. Such a representation is 
possible, for the poles of u„ (zeros of H1

1]
) lie entirely in the lower half-plane and do 

not cluster near the real axis. We first examine the behavior of uv on the negative 
imaginary axis. 

The qualitative behavior of uv on the branch cut is illustrated by the case of 
v = 2, shown in Figure 4.2. The plot changes little with changing v, except for the 
sign of \m[uv(z)) and the sharpness of its extremum. 

LEMMA 4.2. Forv £ 1, v ± k+1/2, fc e Z. the function uv{re~vil2) is infinitely 
differentiable on r £ (0, oo) and has imaginary part satisfying the following formulae: 

(4.9) lm(uv{re-iri^)) = 7T COs(f7r) 

cos2(^)A'2(r) + (7r/„(r) +sin(i/7r)#„(r))' 
^0, 

(4.10) Im(ul,(re-'"'/2)) 
(log(r/2)+7)2 + 7r2' 

wcos{i/n)      2M 

.4M-ir(M)2 

(4.11) Im(uv(re-"/2)) ~ 2 cos(i/7r) re~2r, 

(4.12) lm(uu{re-ni/2)) cos(i/7r)v/r2 + v2 

cosh(2i/0(r/|i/|))+sin(|i/|7r)' 

r -»0, 

r —> oo, 

W\ -> oo, 

where <j> is defined in (3.20). 
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Proof. Infinite differentiability of uu{z) follows from the observation that HI
:)

(Z) 

# 0 on the negative imaginary axis. To derive (4.9) we recall (3.11) to obtain 

(4.13) ImMre-"2)) =       "rcos^HA^r)/» - Kj(r)Iv(r)) 

cos2(I/7r)A'2(r) + {nl„(r) + sm(is-)Ku(r))2 

then apply (3.10). The remaining formulas follow from the asymptotic forms of Ku{r) 
and Iv(r) for small and large r, and the uniform large u expansions given in (3.12) 
through (3.15) and (3.19). Here we use the symmetry u.v = uv. Note that (4.10) is 
valid for rj\v\ -> 0. The approximation (4.12) is nonuniform for v « Ik - 1/2 and 
7i7„(r) + s\n{yn)Kv(r) » 0. D 

LEMMA 4.3.   Given u0 > 0 i/iere exist constants c0 and cr such that for all v € R. 
M > fo, ^ ^ * + 1/2, k e Z, and a// z satisfying Im(z) > 0. rAe function 

satisfies the bounds 

(415) ,   ,  f°,„.,, < |/(*)| < Cl 
i + W/M -'^ "- l + |r|/H" 

Moreover, there exists 5 > 0 suc/i tfiar /or a// i/gR, \v\ > i/0, and £ with 0 < c < 1/2, 
/(z) admits an approximation g(z) that is a sum of d < 6- (l + \v\~l log(l/<r)) -log(l/£) 
poles, with 

(4-16) \f(z)-9(*)\<e-\f(z)\, 

provided lm(z) > 0. 
Proof.   We assume v ^ fc + 1/2 for integral /c and begin by changing variables, 

r = \v\w, so that 

(4,7, /W=r!=M£^*r= /",.<->*.. 7o tu.- + z/|i/| Jo 

From the nonvanishing of /^ and its asymptotic behavior in u\ it is clear that (4.15) 
holds for \v\ e {uQ.ux) and any fixed vx > i/0. Using (4.12) for \v\ large but bounded 
away from 2k-1/2 for integral k. an application of Watson's lemma to (4.14) focuses 
on the unique positive zero, w'. of 0 defined in (3.20). As the derivative of this 
function is positive, we conclude 

(4.18) /(2)-     QC0S^~) 
iw* + z/|i/|' 

where a is a function of w*, so that (4.15) clearly holds. However, as v -> Ik - 1/2, 
the denominator on the right-hand side of (4.12) may nearly vanish at w" and the 
expansion loses its uniformity. Setting COS(I/TT) = n in these cases, we see that the 
denominator has a minimum which is bounded below by 0{n2). Hence in an 0{\v\~l) 
neighborhood of the minimum which includes w*, we have 

(4.19)        /Mu0*vwvi+w r/H i ds 
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which by the change of variables s = r)z/\v\ is seen to satisfy the upper bound in 
(4.15) uniformly in 77. As the rest of the integral is small, the upper bound holds. 

We now move on to the approximation. For a positive integer m and a positive 
number w0. we define intervals I0 = (O.w0). Ij = (2j~1w0.2

jw0) for j = 1 m. 
and Im+1 = (2mw0,oo). Now 

(4-20) ft*) = fo(z) + fi(z) + f2(z), 

where fo-fi- and f2 are defined by the formulae 

(4.21) 

fo{z)=  /  n:(w)dw.        fx{z) = Y^ I Hz{w)dw,        ft(z) = f      p,{w)dw. 

We will now choose w0 and m so that /0 and /2 can be ignored and then use Lemma 
3.5 to approximate /j. Using (4.10) and (4.12) and taking w0 sufficiently small we 
have, for some constant c2 independent of v, 

4.22) |/0(z)| < T^±ri(
34)2M  r^-^<.      C2„,^ofM. 

1 +|z|/|i/| W /       J0 -I + I2I/HV4 

Hence, a choice of 

(4-23) WQ = 0{£I/(2M)^   £^0] 

suffices to guarantee 

(4-24) l/o(*)|<f|/(*)| 

in the closed upper half-plane. Now using (4.11) and (4.12) and assuming m suffi- 
ciently large we have, for some constant c3 independent of v, 

(4-25) |/2(2)| <      *f\       f°°    we-^dw < i      f
2,,,    9m

Woe-Wm™°. 

From (4.23), choosing 

1 1 
(4.26) Hi > m0 + m1T—log- 

W\       £ 

for appropriate m0 and m1 independent of v and e leads to 

(4-27) l/200l<f|/(*)|. 

Finally, we apply Lemma 3.5 to the approximation of fj. The error involves the 
function Fx = / |Im(u1/)|/(ir + z)dr, but we note that |Fj| = \fx\. Using p poles for 
each j we produce a p ■ m-pole approximation g(z) with an error estimate, again for 
Im(z) > 0, given by 

(4-28) |/l(2)-ff(z)|<_J__|/lW|. 
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A choice of 

(4.29) P = 0{ log- 

enforces 

(4-30) l/i(2) -9(z)\ <|l/(r)! 

By combining (4.24). (4.27). (4.30). and the triangle inequality, we obtain (4.16) with 
the number of poles, d = p- m. satisfying the stated bound. 0 

The case v = 0 requires special treatment. First, the direct application of the 
preceding arguments leads to a significantly larger upper bound on the number of 
poles. Second, we note that u0(0) = 0. so that relative error bounds near z = 0 
require a vanishing absolute error. Finally, the lack of regularity of u0(~) at z = 0 
precludes uniform rational approximation, as discussed in [10]. Therefore, we relax the 
condition Im(z) > 0 to Im(z) > 7/ > 0. By (2.20) this will lead to good approximate 
convolutions for times T < 7/_1. 

LEMMA 4.4. There exists 6 > 0 such that for all e, 0 < e < 1/2 and 77. 0 < 77 < 
1/2. the function f(z) = u0{z) ~iz + 1/2 admits an approximation g(z) that is a sum 
ofd<6- (log(l/7?) + loglog(l/<r)) -log(l/£) poles, with 

(4-31) 1/(2) - S(*)l <*■ |/(2)|, 

provided lm(z) > r\. 
Proof. Note that since u0(z) has no poles, f(z) is given by (4.14) and satisfies 

(4.15). Define intervals 

Ij =  {(V-' - 1)7/. (2* - I)/?)   for j = 1 771.       Im+l =  ((2m - 1)7/. oc). 

Now 

(4-32) M = fl(z) + f2(z), 

where fi and f2 are defined by the formulae 

(4.33)     Mz) = ±flm^re"l/^dr. f2(z)=f       ^M^^Adr 
j=1Jl3 

lr + z //m+1 ir + z 

We will now choose m so that f2 can be ignored and then use Lemma 3.5 to approxi- 
mate fi. Using (4.11) and assuming m sufficiently large we have, for some constant c, 

(4-34) |/2(*)| < _£_   fX        re~2rdw < ~^-2m-lr1e-2"^. 

Hence, choosing 

(4-35) m > m0(log(l/7/) + loglog(l/e)) 

for appropriate m0 independent of 7/ and e leads to 

(4-36) 1/2(2)! < ~\f(z)\. 
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Finally, we apply Lemma 3.5 to the approximation of fx. Using p poles for each j we 

produce a p ■ m-pole approximation g(z) with an error estimate for Im(c) > rj given 
by 

(4-37) l/i(*) -5(^)1 <3^|/i(*)|. 

A choice of 

(4.38) p = o(\og\ 

enforces 

(4-39) \h{z)-g{Z)\<E-\f{z)\. 

By (4.36). (4.39). and the triangle inequality. (4.31) is achieved with the number of 
poles, d = p-m, satisfying the stated bound. D 

We now consider the contribution of the poles. 
LEMMA 4.5. There exist constants C0, C1: 6 > 0 such that for all v,e € R with 

2 < \v\ and 0 < c < 1/2 the function 

N»      h 
(4.40) h(z) = J2 

n=l Z       kv'n 

(1) ■where /iKl,.... hv,xu are the roots of Hi   , satisfies the inequalities 

(4.41)  ii-J— < |/i(2)j < 

anrf admits an approximation g(z) that is a sum of d < 6 ■ log \i/\ ■ log(l/e) poles, with 

(4-42) \h(z)-g(z)\<£.\h(z)\, 

provided lm(z) > 0. 

Proof. The curve C defined in Lemma 3.2, near which hvA/\u\,..., hv,NJ\u\ lie, 
is contained in disks separated from the real axis. If we denote the disk of radius r 
centered at c by D(r.c), then the disks 

(4.43) {D(-lm(z).z)\ z e C, | argz - TT/2| = TT/2 + 7r/2n, n = 1,2,... }, 

for example, contain C\{+1,-1}. From (3.31), the root hvA closest to the real axis 
satisfies 

(4-44) «Ä^.i~^H-2/3; 

hence it is contained in a disk of (4.43) with n « log2 (24/33_1/27r(—ax)
_1 |i/|2/3), and 

all of the roots are contained in 0(log \v\) of the disks. Now applying Lemma 3.4 we 
obtain (4.42) with \h\ replaced by \H\ = \ £ |/i„,„|/(z - /i„,n)|. To obtain the upper 
bound in (4.41) for both h and H we note first that it is trivial except for \z/v\ « 1. 
A detailed analysis of the roots as described by Lemma 3.2 shows that 

(4-45) |lm(/i^)| > cj2/3|^|1/3_ 
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Hence, for \z/u\ % 1. 

hv± 

K.j 
(4.46) E|rZT-   ^Ci-!2/3Er2/3<3C|,|. 

The lower bound in (4.41) is again obvious except for \z/u\ = 1. Then, however, we 
note that 

(4.47) h(z) = u„{z) - iz + 1/2 - f(z). 

Since, from (3.26). |u„(r)| = 0(M2/3) for \z/v\ % 1 and |/(2)| = 0(1) by (4.15) the 
right-hand side is dominated by -iz and \h(z)\ = 0(\v\).       ■ D 

The combination of Theorem 4.1 and Lemmas 4.3 and 4.5 suffices to prove our 
principal analytical result. 

THEOREM 4.6. Given v0 > 0 there exists 6 > 0 such that for all i/gl. \u\ > v0. 
and 0 < £ < 1/2 there exists d with 

(4.48) d < 6( log |i/| ■ log(l/e) + log2 \v\ + \is\~1 log2(l/e)), 

and complex numbers a1:...,ad and ft.... ,ßd. depending on v and e, such that the 
function 

(4-49) uv.£(z) = iz-l + i2-zir 
n= 1 

approximates uu(z) with the bound 

(4-5°) kW-^.e(r)|<c-|u„(2)|. 
provided that lm{z) > 0. Furthermore 

(4'51)       [j_Ju^x)-U»Ax)\2dx\       <s-lr\Ul/(x)-ix + l/2\2dx\      . 

Proof. We first note the lower bound 

(4.52) \u,,(z)-iz + l/2\ > - 
c\v\ 

+  z    W 

For v > 0 the function is nonvanishing and has the correct asymptotic behavior, so 
we need only consider the case of \u\ large. The result then follows from (3.26). This 
proves (4.51) and (4.50) with uu replaced by uv - iz + 1/2 on the right-hand side. 
From (3.26) we have 

(4-53) \Uu(z) -iz + 1/2| < c\v\llz\uu(z)\, 

so that the final result follows from the scaling s —> \v\~l/3£. Q 
The number of poles in (4.48) required to approximate u„(z) to a tolerance 

c depends on both e and v. The asymptotic dependence on e is proportional to 
IH"1 log (l/£)- We will see in the numerical examples, however, that this term is im- 
portant only for small |i/|; otherwise the dominant term is the first, for an asymptotic 



1156        BRADLEY ALPERT. LESLIE GREENGARD. AND THOMAS HAGSTROM 

dependence of 0(log \v\ ■ log(l/£)). As we generally have z < \y\~l in practice, the 
term log" \v\ is of less importance. 

Similarly. Lemma 4.4 leads to the following theorem for v = 0. 
THEOREM 4.7. There exists 6 > 0 such that for all £, 0 < s < 1/2 and 7/. 

0 < 7? < 1/2 there exists d < 6 ■ (log(l/7?) • log(l/e) + loglog(l/e) + loglog(l/7i)) 
and complex numbers alf..., ad and ßi,...,ßd, depending on r\ and e, such that the 
function 

(4-54) UU:) = i*-\ + Y.^r 
" 71=1    " '     " 

approximates UQ(Z) with the bound 

(4.55) \u0(z)-U0.£(z)\ <e-\u0(z)\, 

provided that lm(z) > rj. Furthermore 

1/2 

(4.56) I    /      \u0(x + ir]) - U0,e(x + ir])\2dx\ 

<£•(   /     \ul/(x + ir])-ix + T) + l/2\2dx ) 

1/2 

Proo/. Again we already have (4.55) with u0(z) -iz + 1/2 on the right-hand side. 
By (3.24) we find 

(4-57) M-e) - J2 + 1/2| < clog(l/»7)|uo(2)|. 

The theorem follows from the scaling e —> log-1 (1/77)5. D 
As we must take 77 = T~l, we see that the number of poles required may grow 

like log(l/e) • logT + logT ■ log log T. However, this is only for the mode n = 0 in the 
two-dimensionsal case. In short, the T dependence is insignificant in practice. 

5. Computation of the rational representations. Analytical error bound 
estimates developed in the previous sections are based on maximum norm errors 
as in (2.19) and (2.20). In numerical computation it is often convenient, however, to 
obtain least squares solutions. Our method of computing a rational function U^ that 
satisfies (4.50) is to enforce (4.51). An alternative approach would be to use rational 
Chebyshev approximation as developed by Trefethen and Gutknecht [24, 25, 26]. 

In the numerical computations, we work with 

(5-1) ü„(z) = uv(z)-iz + l/2 

and its sum-of-poles approximation Üu,£(z) = UUtE(z) - iz + 1/2.   In particular, we 
have the nonlinear least squares problem 

(5.2) nn / mm 
P. 

u„(x) 
Q(x) 

dx 

for P, Q polynomials with deg(P) + 1 = deg(Q) = d.   Problem (5.2) is not only 
nonlinear, but also very poorly conditioned when P, Q are represented in terms of 
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their monomial coefficients.  We apply two tactics for coping with these difficulties: 
linearization and orthogonalization. 

We linearize the problem by starting with a good estimate of Q and updating 
P Q iteratively. In particular, we solve the linear least squares problem 

(5.3) mm        /        — - — 1—i ü 
P(,-.,.Q„-1,y_oc     QW(X) Q(')(x) ■üu(x) dx. 

where the integral is replaced by a quadrature. The initial values P(0). Qw are 
obtained by exploiting the asymptotic expansion (3.25) and the recurrence (3.28). 
We find that two to three iterations of (5.3) generally suffice. 

The quadrature for (5.3) is derived by first changing variables, 

f(x)dx = /       /(tanÖ)sec2e^%yu'!/(tanÖ,)sec2öi. 
-oc J—n/2 ~ 

where #2, 6m and wx ... ,wm denote appropriate quadrature nodes and weights. 
The transformed integrand is periodic on the interval [—7r/2, TT/2]. SO the trapezoidal 
rule (or midpoint rule) is an obvious candidate. The integrand is infinitely continously 
differentiate, except at 0 = 0, where its regularity is of order 2\v\. For ]v\ > 8 (say), 
the trapezoidal rule delivers at least 16th-order convergence and is very effective. 
For small \u\, however, a quadrature that adjusts for the complicated singularity at 
0 = 0 is needed. Here we can successively subdivide the interval near the singularity, 
applying high-order quadratures on each subinterval (see, for example, [27]). 

The quadrature discretization of (5.3) cannot be solved as a least squares problem 
by standard techniques, due to its extremely poor conditioning. We avoid forming the 
corresponding matrix; rather we solve the least squares problem by Gram-Schmidt 
orthogonalization. The 2d + 1 functions 

(5-5) £„, 1, xüv, x....,xd'lül/. xd-\ xdüu 

are orthogonalized under the real inner product 

J-oo    |Q(')(x)|2 

to obtain the orthogonal functions 

{M-i')- n = 1, 

1. n = 2, 

xgn„2{x) - EJ
min

1
{4'n-1} cnj gn_,(x),    n = 3,..., 2d + 1, 

where 

(5.8) c„   - ^X9n-^9n-j)i n = 3, ...,2d+l, 
nJ       (9n-j,9n-j)i j = l,...,min{4,n-1}. 

Now 

(5-9) fi2d+i = -P(l+1)+^Q('+I», 
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TABLE 1 
Number d of poles to represent the Laplace transform of nonreflecting boundary kernels an and 

j-n, for various values of s. 

= = = 10~6 

On U!n 

n d n d 
£  = 10~15 0 

1 
2 

3- 6 

26 
9 
6 
5 0-5 n 

On U!n 

n d n d 
1 41 

7- 8 6 6- 8 6 2 24 
9- 12 7 9- 12 7 3 18 
13- 19 8 13- 19 8 4 15 
20- 31 9 20- 31 9 0 14 
32- 51 10 32-51 10 6 13 
52- 86 11 52-86 11 7- 12 12 

87- 147 12 87- 147 12 13- 14 13 0- 13 n 
148- 227 13 148- 228 13 15- 16 14 14- 15 14 
228- 401 14 229- 402 14 17- 18 15 16- 18 15 
402- 728 15 403- 728 15 19-22 16 19-21 16 
729-1024 16 729-1024 16 23-26 

27-31 
32- 37 

17 
18 
19 

22-25 
26- 30 
31- 36 

17 
18 
19 

s = io-8 

0~n U>n 38- 45 
46- 54 
55-65 

20 
21 
22 

37-44 
45-53 
54- 65 

20 
21 
22 

n d n d 
0 44 
1 15 66- 79 23 66- 79 23 
2 9 80-97 24 80-96 24 

3- 8 i 0-7 n 98- 118 25 97- 118 25 
9- 10 8 8- 10 8 119- 145 26 119- 144 26 
11- 14 9 11- 14 9 146- 177 27 145- 176 27 
15- 20 10 15- 19 10 178- 216 28 T77- 216 28 
21- 28 11 20- 28 11 217- 265 29 217- 264 29 
29- 41 12 29-40 12 266- 324 30 265- 324 30 
42- 58 13 41- 57 13 325- 397 31 325- 396 31 
59- 84 14 58- 83 14 398- 486 32 397- 485 3? 

85- 123 15 84- 123 15 487- 595 33 486- 594 33 
124- 183 16 124- 183 16 596- 728 34 595- 727 34 
184- 275 17 184- 275 17 729- 890 35 728- 890 35 
276- 418 
419- 638 

18 
19 

276- 418 
419- 637 

18 891-1024 36 891-1024 36 
19 

639- 971 20 638- 971 20 
972-1024 21 972-1024 21 

so P^+l) and Q(l+1> are computed from the recurrence coefficients cnj by splitting 
(5.7) into even- and odd-numbered parts. 

For some applications, including nonreflecting boundary kernels, it is convenient 
to represent P/Q as a sum of poles, 

(5.10) P(z) 

We compute ßi,...,ßd (zeros of Q) by Newton iteration with zero suppression (see, 
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TABLE 2 
Laplace transform of cylinder kernel an defined in (2.13). approximated as a sum of d poles. 

/or TI = 1, 4 and £= 10~6. 

Pole Coefficient Pole Location 
71          d Re Im Re Im 
1      9 - 0.426478E - 02 0.000000£ + 00 -0.368403£ + 01 0.000000£ + 00 

-0.416255£ - 01 0.000000£ + 00 -0.205860£ + 01 0.000000£ + 00 
-0.122665£ + 00 0.000000£ + 00 -0.118994£ + 01 O.O0000OE 4- 00 
-0.143704£ + 00 0.000000£ + 00 -0.717570£-f 00 O.OOOOOOE^OO 
-0.530662£ - 01 0.000000£ + 00 -0.423506£ + 00 0.000000£ + 00 
-0.863872£ - 02 0.000000£ + 00 -0.223111£-f 00 0.000000£ + 00 
-0.961472£ - 03 0.000000E + 00 -0.103710£ + 00 0.000000£ + 00 
-0.721548£ - 04 0.000000£ + 00 -0.409342£ - 01 0.000000£ + 00 
-0.250102£-05 0.000000£ + 00 -0.117156£-01 0.000000£ + 00 

2     6 0.218164£-01 0.000000£ + 00 -0.333263E + 01 0.000000£ 4 00 
0.860648E + 00 0.000000£ + 00 -0.162945£ + 01 0.000000£ + 00 

-0.138934£-f 01 0.162069£ + 00 -0.125843£-01 0.412637£4-00 
-0.138934£ + 01 -0.162069£ + 00 -0.125843£ + 01 -0.412637£4-00 

0.209905£ - 01 0.000000£ + 00 -0.612710£ + 00 0.000000£ 4- 00 
0.232032£ - 03 0.000000£ + 00 -0.240327£ + 00 0.000000£ 4- 00 

3      5 - 0.179277£ + 00 0.000000£ + 00 -0.309775£ 4- 01 0.000000£ 4- 00 
-0.168335£ + 01 0.129111£ + 01 -0.167998£ + 01 0.130784£4-01 
-0.168335£ + 01 -0.129111£ + 01 -0.167998£ + 01 -0.130784£4-01 
-0.816322£ + 00 0.000000£ + 00 -0.187260£ + 01 0.000000£ 4- 00 
-0.126962£-01 0.000000£ + 00 -0.950854£ + 00 0.000000£ 4- 00 

4      5 - 0.197725£ + 01 0.220886£ + 01 -0.197861£ + 01 0.220444£ 4- 01 
-0.197725£ + 01 -0.220886£ + 01 -0.197861£ + 01 -0.220444£4-01 
-0.219247£ + 01 0.216535£ + 01 -0.282304£ + 01 0.382237£ 4- 00 
-0.219247£ + 01 -0.216535E + 01 -0.282304E 4-01 -0.382237E 4 00 

0.464435£ + 00 0.00000OE + O0 1 -0.201159£ + 01 0.000000£ 4- 00 

for example, [28]) by the formula 

(5.11; ßO' + i) _ ßU) _ 
n ^n 

Q{3n: tU)\ 

mül)-E|^ flßnJ>~ßk 

where ß1,....ßn_1 are the previously computed zeros of Q. Then ai,...,ad are 
computed by the formula an = P(ßn)/Q'(/3n). The derivative Q'(z) is obtained by 
differentiating the recurrence (5.7). 

6. Numerical results. We have implemented the algorithm described in sec- 
tion 5 to compute the representations of an and wn through their Laplace transforms. 
Recall that for the cylinder kernels, CT„, we have v = n while for the sphere kernels, un, 
wejiave v = n + 1/2. Table 1 presents the sizes of the representations for e = 10-6, 
10"8, and lO"15 in (4.51). For the cylinder kernels, which are affected by the branch 
cut, the number of poles for small n is higher than for the sphere kernels. This dis- 
crepancy, however, rapidly vanishes as n increases and the asymptotic performance 
ensues. The log(l/£) dependence of the number of poles for n > 10 is clear. 

For e - 10-8 we have also computed the maximum norm relative errors which 
appear in (2.19) by sampling on a fine mesh. For the cylinder kernel with n = 0, 
we expect an 0(1) error in a small interval about the origin due to (4.10). However, 
errors of less than e are achieved for \s\ > 5 x lO"7. This implies a similar accuracy 
in the approximation of the convolution for times of order 106. For all other cases the 
maximum norm relative errors are of order e. 
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Finally. Table 2 presents poles and coefficients for the cylinder kernels for n = 
1,.... 4 and e = 10-6 to allow comparison by a reader interested in repeating our cal- 
culations. Note that the pole locations are written in terms of s = z/i. Extensive ta- 
bles will be made available on the Web at http://math.nist.gov/mcsd/Staff/BAlpert. 

Remark. Our approximate representation of the nonrefiecting boundary kernel 
could be used to reduce the cost of the method introduced by Grote and Keller [8]. The 
differential operators of degree n obtained in their derivation need only be replaced by 
the corresponding differential operators of degree log n for any specified accuracy. It 
is interesting to note that in the two-dimensional case, where the approach of [8] does 
not apply, the analysis described above can be used to derive an integrodifferential 
formulation in the same spirit. 

7. Summary. In this paper we have introduced new representations for the 
logarithmic derivative of a Hankel function of real order, that scale in size as the 
logarithm of the order. An algorithm to compute the representations was presented 
and our numerical results demonstrate that the new representations are modest in 
size for orders and accuracies likely to be of practical interest. 

The present motivation for this work is the numerical modeling of nonrefiect- 
ing boundaries for the wave equation, discussed briefly here and in more detail in 
[18]. Maxwell's equations are also susceptible to similar treatment as outlined in [29]. 
The new representations enable the application of the exact nonrefiecting boundary 
conditions, which are global in space and time, to be computationally effective. 

8. Appendix: Stability of exact and approximate conditions. In this ap- 
pendix, we consider the stability of our approach to the design of nonrefiecting bound- 
ary conditions. Given that we are approximating the exact conditions uniformly, it 
is natural to expect that our approximations possess similar stability characteristics. 
This is, indeed, the case. Oddly enough, however, the exact boundary conditions 
themselves do not satisfy the uniform Kreiss-Lopatinski conditions which are neces- 
sary and sufficient for strong well-posedness in the usual sense [30]. This may seem 
paradoxical since the unbounded domain problem itself is strongly well-posed. The 
difficulty is that the exact reduction of an unbounded domain problem to a bounded 
domain problem gives rise to forcings (inhomogeneous boundary terms) which live in 
a restricted subspace. The Kreiss-Lopatinski conditions, on the other hand, require 
bounds for arbitrary forcings. In that setting, our best estimates result in the loss of 
1/3 of a derivative in terms of Sobolev norms. In practice we doubt that this fact is 
of any significance, and have certainly encountered no stability problems in our long 
time numerical simulations. 

To fill in some of the details, consider a spherical domain Q of radius one, within 
which the homogeneous wave equation with homogeneous initial data is satisfied. At 
the boundary we have 

/D u OUnm Skn(S) „ 
mm i 

where en = 0 for the exact condition and is uniformly small when we use our approx- 
imations. Here gnm is the spherical harmonic transform of an arbitrary forcing g. 

Following Sakamoto, we seek to estimate 

fT 

Jo 
3.2) H(u)= I    (|K,t)||?,n + ||<,OII?,an+   ^(;t) 

du,    .   2 
dt, 

o,an 
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where 

(8-3) ll/lll.n=/(/2 + IWi2). 
Jn 

while || • ||o.n denotes the usual L2 norm. On the boundary. dQ. we will make use 
of fractional Sobolev norms, most easily defined in terms of the spherical harmonic 
coefficients: 

(8-4) ll/llU = D1 + "W™!2- 
n.m 

Strong well-posedness would follow from showing that 

(8.5) H{u)<cf   \\g{-.t)\\i,mdt. 
Jo 

Instead, we can show that 

(8-6) H(u)<c[   \\g(:t)\\21/xdndt. 
Jo 

To prove this, let s = iz and note that 

(8-7) *„(*)«/#>(*) oc*"1/2/^*),   v = n + -. 

Bounded solutions within the sphere are given by 

(8-8) ünm(r,s)cxjn(rz) ex (rz)-1/2 J„(rr). 

Precisely, setting 

(8-9) "nm(r, s) = AnmWirzrWj^rz), 

we find 

(8-10) Anm(z) = -2-lz^H^(z)8n(z)gnrn(z), 

where 

(i),      ^ -1 

(8-11) Sn = (l - IlenJu{z){zH^{z) _ f^Jl 

We now estimate norms of the solution. First note that the products in the definition 

of i5„, Ju{z)Hv (2), zJv{z)Hu
l (2). are uniformly bounded for Im(z) > 0. (Seethe 

limits z —> 0. z —> cc, and v -* 00.) Therefore, as mentioned above, the error term, 
so long as it's small, has no effect on the estimates we derive, and we simply ignore 
it. That is. we set Sn = 1. 

We concentrate on the boundary terms in H, as they are both the most straight- 
forward to compute and the most ill behaved. In transform space we have 

(8.12) ^+n2)\ünm(l,S)\i + \sü'nm(l,s^<nl(z)\gnm{z)l^ 
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(8.13) 7fc) = \H?\z)\2 (v2\Uz)\2 + \z\2\J'A*)\2) ■ 

(Here and throughout, c will denote a positive constant independent of all variables.) 
We first note that as the only singularities of Bessel functions occur at zero and 
infinity, we need only consider the limits z —> 0. z —> oc, and v —» oc. The first two 
are straightforward: 

(8.14) -*(z) * cT2(u){z/2)-2v (v2(z/2)2»/T2{u + 1)) = c, 0. 

(8.15) tiU) c\z\~l (u2\z\-1 cos2. z sin 0 csm 2 , 

For large v we use the uniform asymptotic expansions of Bessel functions due to Olver 
[20]. which yield 

(8.16) suP7;(z) = 0(^). 

From Parseval's relation, we conclude that 

.17) R,*)lli.an + 
du 

dr o.an 
dt<c !!<?(•> Olli/s.aoA 

The estimation of the spatial integrals is more involved, as for r < 1 the solution has 
two transition zones, z K v and rz ss v, and there are a number of cases to consider. 
However, the estimates follow along the same lines and lead to the same result. 

It is interesting to note that the loss-of-derivative phenomenon is suppressed when 
one looks at the error due to the approximation of the boundary condition. In that 
case the transform of the exact solution near the boundary is 

(8.18) (1) Unm[l,S), 
tin    (Z) 

so that the error, e, satisfies the problem above with gnm given by 

.19) 9nr, 
£n hn

1](z) 
unm(l,s) = enfj.n{z)ünm(l,s) 

Now the best estimate of \in takes the form 

(8-20) \^n\<c{\z\ + v), 

which, in combination with (8.6), would lead to an estimate of the 1-norms of the 
error in terms of the 4/3-norms of the solution. However, using again the large v 
asymptotics, a direct calculation shows 

.21) \PnlA < C{\z\+l>). 

Thus /j.n is smaller than its maximum by 0{u~l/3) in the transition region where 
7l, = 0{vl/z). Hence we find for the error 

.22) K(e)<csup|6n|2/'    (|K,t)||2.an+   ^(.,t) 
n,s Jo     \ at 0.ÖQ 

dt. 
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In other words, the 1-norms of the error are controlled by the 1-norms of the solution. 
We have, of course, ignored discretization error, which could conceivably cause 

difficulties in association with the lack of strong well-posedness. To rule them out 
would require a more detailed analysis. In practice we have encountered no difficulties, 
even for very long time simulations. We should also note that strong well-posedness 
could be artificially recovered by perturbing the approximate conditions for large n. 
allowing high accuracy to be maintained for smooth solutions. Finally, we note that 
a similar analysis can be carried out in two dimensions. 
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GENERALIZED GAUSSIAN QUADRATURES AND SINGULAR 
VALUE DECOMPOSITIONS OF INTEGRAL OPERATORS* 
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Abstract. Generalized Gaussian quadratures appear to have been introduced by Markov late 
in the last century and have been studied in great detail as a part of modern analysis. They have 
not been widely used as a computational tool, in part due to an absence of effective numerical 
schemes for their construction. Recently, a numerical scheme for the design of such quadratures was 
introduced by Ma et al.; numerical results presented in their paper indicate that such quadratures 
dramatically reduce the computational cost of the evaluation of integrals under certain conditions. 
In this paper, we modify their approach, improving the stability of the scheme and extending its 
range of applicability. The performance of the method is illustrated with several numerical examples. 

Key words, quadratures, singular value decompositions, Chebyshev systems, fast algorithms 
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1. Introduction. Generalized Gaussian quadratures appear to have been intro- 
duced by Markov [11, 12] late in the last century. More recent expositions include 
those by Krein [9] and Karlin and Studden [8]. Those expositions contain proofs of 
the existence of such quadratures for wide classes of functions; however, they do not 
describe a numerical procedure for obtaining the quadrature weights and nodes. 

Recently, a paper by Ma, Rokhlin, and Wandzura [10] described a numerical 
algorithm for obtaining such quadratures. In [10], a version of Newton's method 
is introduced for the determination of nodes and weights of generalized Gaussian 
quadratures. The procedure of [10] guarantees the convergence of the Newton algo- 
rithm provided it is started sufficiently close to the solution (whose existence is proven 
in [11, 9, 8]) and utilizes a continuation procedure to provide such starting points. 
The present paper describes a variation of that algorithm, which consists mainly of 
two major changes. The first change is that an entirely different continuation scheme 
is used; with the new continuation scheme, the algorithm is considerably more robust. 
The second change is the addition of a preprocessing step which, given as input a large 
class of functions, uses the singular value decomposition (SVD) to produce a set of 
basis functions suitable for the algorithm. 

Since a substantial fraction of the algorithm is changed, this paper is written as a 
repetition of [10], rather than as a list of changes; however, the portions dealing with 
quadratures for functions with end-point singularities are omitted. 

This paper is organized in the following manner. Section 2 summarizes the neces- 
sary material from [9] and [8]. Section 3 briefly describes certain standard numerical 
tools used by the algorithm. Section 4 contains various analytical results to be used in 
the construction of the algorithm. Section 5 describes the algorithm in detail. Finally, 
section 6 contains several numerical examples. 
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2. Mathematical preliminaries. 

2.1. Chebyshev systems. 
DEFINITION 2.1. A sequence of functions 4>i,...,<pn will be referred to as a 

Chebyshev system on the interval [a, b] if each of them is continuous and the deter- 
minant 

<l>i(xi)     •■■    4>l{xn) 
(1) : : 

is nonzero for any sequence of points ilt..., xn such that a < xj < x2 ■ ■ ■ < xn < b. 
An alternate definition of a Chebyshev system is that any linear combination of 

the functions with nonzero coefficients should have no more than n zeros. 
A related definition is that of an extended Chebyshev system. 
DEFINITION 2.2. Given a set of functions <f>i,...,4>n which are continuously 

differentiate on an interval [a, b], and given a sequence of points X\,.,., xn such that 
a < xi < x2 < ■ ■ ■ < xn < b, let the sequence mi,...,mn be defined by the formulae 

if j > 1 and Xj =/= Xj-i, 
if j > 1 and x, = Xj-X = ■ ■ ■ = x\, 
if j > k + 1 and Xj = Xj_i = • • • = Xj_^ ^ Xj^k-i- 

. ,x„) = [cij] be defined by the formula 

°1J      dxm> [ lh 

in which -j§f(xj) is taken to be the function value 4>i{xj). Then <j>i,...,4>n ffill be re- 
ferredto as an extended Chebyshev system on[a,b] if the determinant |C(xi,... ,x„)| 
is nonzero for all such sequences Xj. 

Remark 2.1. It is obvious from Definition 2.2 that an extended Chebyshev sys- 
tem is a special case of the Chebyshev system. The additional constraint is that the 
successive points x< at which the function is sampled to form the matrix may be iden- 
tical; in that case, for each duplicated point, the first corresponding column contains 
the function values, the second column contains the first derivatives of the functions, 
the third column contains the second derivatives of the functions, and so forth; this 
matrix must also be nonsingular. 

Examples of Chebyshev and extended Chebyshev systems include the following 
(additional examples can be found in [8]). 

EXAMPLE 2.1. The powers l,x,x2,...,xn form an extended Chebyshev system 
on the interval (—00,00). 

EXAMPLE 2.2. The exponentials e_AlX, e~x*x,..., e~XnX form an extended Cheby- 
shev system for any Ai,..., An > 0 on the interval [0,00). 

EXAMPLE 2.3. The functions l,cosx,sinx,cos2x,sin2x,... ,cosnx,sinnx form 
a Chebyshev system on the interval [0,27r). 

2.2. Generalized Gaussian quadratures. The quadrature rules considered 
in this paper are expressions of the form 

n 

(4) 5>^fo). 
J'=l 

mi = 0, 

(2) 
TUj ■ 

TUj - 

= 0 
= j - 1 

TUj - = k 

Let the matrix C(i] ) 

(3) 
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where the points Xj € R and coefficients Wj € R are referred to as the nodes and 
weights of the quadrature, respectively. They serve as approximations to integrals of 
the form 

(5) /   4>(x)<jj(x)dx, 

where u> has the form 

m 

(6) u(x) = w(x) + J2^r 6(x -Xj), 
j=l 

with m a nonnegative integer, ü : [a,b] —> R an integrable nonnegative function, 
XiiX2,---,Xm points on the interval [a, b], pi,/J.2, ..., pm positive real coefficients, 
and 6 the Dirac <5-function on R. 

Remark 2.2. Obviously, (6) defines a; to be a linear combination of a nonnegative 
function with a finite collection of 5-functions. In a mild abuse of notation, throughout 
this paper we will be referring to u as a nonnegative function. 

Quadratures are typically chosen so that the quadrature (4) is equal to the desired 
integral (5) for some set of functions, commonly polynomials of some fixed order. 
Of these, the classical Gaussian quadrature rules consist of n nodes and integrate 
polynomials of order In — 1 exactly; these quadratures are used in this paper as a 
numerical tool (see section 3.2). In [10], the notion of a Gaussian quadrature was 
generalized as follows. 

DEFINITION 2.3. A quadrature formula will be referred to as Gaussian with respect 
to a set of In functions fa,..., fan ■ [a, b] —► R and a weight function u>: [a, b] —► R+, 
if it consists of n weights and nodes, and integrates the functions fa exactly with 
the weight function u> for all i = 1,... ,2n. The weights and nodes of a Gaussian 
quadrature will be referred to as Gaussian weights and nodes, respectively. 

The following theorem appears to be due to Markov [11, 12]; proofs of it can also 
be found in [9] and [8] (in a somewhat different form). 

THEOREM 2.1. Suppose that the functions <pi,..., 02„ : [a, b] —> R form a Cheby- 
shev system on [a,b\. Suppose in addition that u> : [a, b] —* R is defined by (6), and 
that either 

(7) /   w(x)dx>0 /   ü[x)dx 

or m > n (or both). Then there exists a unique Gaussian quadrature for 4>\,..., fan 
on [a,b] with respect to the weight function UJ. The weights of this quadrature are 
positive. 

2.3. Total positivity. A concept closely related to that of an extended Cheby- 
shev system is that of a extended totally positive (ETP) kernel. 

DEFINITION 2.4. Given a function K : [a,b] x [c,d] -> R which is n times 
continuously differentiate, and given a sequence of points x\,...,xn such that c < 
zi < X2 < ••• < in < d, let the sequence mi,...,mn be defined by (2). Let the 
functions fa,...,4>n be defined by the formula 

QTTlj TS 

W **(*> = ää£(*i,t), 
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in which %£(xj,t) is taken to be the function value K(xj,t). Then K will be referred 
to as ETP if the functions <f>i,..., <j>n form an extended Chebyshev system on [c, d] for 
all such sequences of Xj. 

Examples of ETP kernels include the following (additional examples can be found 
in [8]). 

EXAMPLE 2.4.  The function e~xt is ETP for x, t e [0, oo). 
EXAMPLE 2.5.  The function e-^"')2 is ETP forx,t £ (-00,00). 
EXAMPLE 2.6.   The function l/(x + t) is ETPforx,t <E (0,oo). 
A proof of the following lemma can be found in [8], for example. 
LEMMA 2.2. Suppose that K and L are ETP functions of two variables. Then 

the function M defined by the formula 

(9) M(x,t)=  I K(x,s)L(s,t)ds 

is ETP. In other words, if the kernels of two integral operators are ETP, the kernel 
of the product of the two operators is ETP. 

The following theorem can be found in [7, 8]. 
THEOREM 2.3. Suppose that K : [a,b] x [a,b] -* R is an ETP kernel. Then the 

first p eigenfunctions of the integral operator T : L2[a,b) -> L2[a,b) defined by the 
formula 

rb 
(10) (T(f>)(x)=  /   K(x,s)<t,{s)ds 

Ja 

constitute an extended Chebyshev system for any p > 1. 

3. Numerical preliminaries. 

3.1. Newton's method. In this section we discuss two well-known numerical 
techniques: Newton's method and the continuation method. A more detailed discus- 
sion of these techniques can be found, for example, in [14]. 

Newton's method is an iterative method for the solution of nonlinear systems of 
equations of the form F(x) = 0, where F : Rn -► Rn is a continuously differentiable 
function of the form 

(11) F(x) 

( fi(x) \ 
/2(z) 

and x = (xi,...,xn)T. The method uses the Jacobian matrix J of F, which is defined 
by the formula 

/§£(*) ■•• few 
(12) J(x)= : : 

\fe<*) ••• few 
LEMMA 3.1 (Newton's method). Suppose that for some y € Rn, 

(13) F(y) = 0, 
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with F : Rn -> Rn defined by (11), and that \J(y)\ ± 0, with \J(y)\ denoting the 
determinant of the matrix J(x) defined in (12), evaluated at the point y. Given a 
starting point y0 G Rn, let the sequence 3/1,3/2» •• • be defined by the formula 

(14) Vk+i^Vk-J-^y^Fiyk). 

Then there exists a positive real number e such that for any 3/0 satisfying the inequality 
II2/0 — 3/11 < E, the sequence (14) converges to y quadratically; that is, there exists a 
positive real number a such that 

(15) \\yk+1-y\\<a\\yk-yf. 

3.1.1. Continuation method. In order for Newton's method to converge, the 
starting point which is provided to it must be close to the desired solution. One 
scheme for generating such starting points is the continuation method, which is as 
follows. 

Suppose that in addition to the function F : R" —» Rn whose zero is to be found, 
another function G : [0,1] x Rn —► Rn is available which possesses the following 
properties. 

(i) For any x G Rn, 

(16) G(l,x) = F(x). 

(ii) The solution of the equation G(0, x) = 0 is known. 
(iii) For all t € [0,1], the equation G(t,x) = 0 has a unique solution x such that 

the conditions of Lemma 3.1 are satisfied. 
(iv) The solution x is a continuous function of t. 

If these conditions are met, an algorithm for the solution of F(x) = 0 is as follows. 
Let the points U, for i = 1,... ,m, be defined by the formula tj = i/m.   Solve in 
succession the equations 

G(ti,x)=0, 

G(t2,x)=0, 

G{tm,x)=0, 

using Newton's method, with the starting point for Newton's method for each equation 
taken to be the solution of the preceding equation. The solution x of the final equation 
G(tm,x) = 0 is, by (16), identical to the solution of the desired equation F(x) — 0. 
Obviously, for sufficiently large m, Newton's method is guaranteed by Lemma 3.1 to 
converge at each step. 

Remark 3.1. In practice, it is desirable to choose the smallest m for which the 
above algorithm will work, in order to reduce the computational cost of the scheme. 
On the other hand, the largest step (U - ti_i) for which the Newton method will 
converge commonly varies as a function of t. Thus the algorithm described in this 
paper uses an adaptive version of the scheme. 

3.2. Gaussian integration and interpolation. Classical Gaussian quadra- 
ture rules are a well-known numerical tool (see, for instance, [14]); they integrate 
polynomials of order 2n — 1 exactly with respect to some weight function and consist 
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of n weights and nodes. A variety of Gaussian quadratures were analyzed in the last 
century, each being denned by a distinct weight function. Of these, the algorithm 
presented in this paper uses only the Gaussian quadratures for the weight function 
u(x) = 1 on the region of integration [-1,1]. These quadratures are closely associated 
with the Legendre polynomials; we will refer to their nodes as Legendre nodes. 

Another numerical tool used in this paper is polynomial interpolation on Legendre 
nodes. Interpolation refers to the following problem: given two finite real sequences 
/i,..., /„ € R and xi,...,xn G [a, b], construct a function / : [a, b] —» R such that 
f(xi) = fi f°r all i = 1,..., n. One interpolation scheme is polynomial interpolation, 
in which the interpolating function / is a polynomial of degree n-l. As is well known, 
such a polynomial always exists and is unique. However, in general two numerical 
difficulties arise with polynomial interpolation using polynomials of high order. The 
first is that for many sequences of points {xj, the values of the interpolating poly- 
nomial between the points {xj are not well conditioned as a function of the values 
{fi} to be interpolated. The second is that even for those sequences of points where 
the computation of the values of the interpolating polynomial is well conditioned, the 
computation of the coefficients of the power series of the interpolating polynomial is 
extremely ill conditioned. 

As is well known, these difficulties do not arise if the points {xj are taken to 
be Chebyshev nodes and the interpolating polynomial is computed as a series of 
Chebyshev polynomials rather than as a power series. As the following lemma shows, 
the difficulties also do not arise if the points {xj are taken to be Legendre nodes and 
the interpolating polynomial is computed as a series of Legendre polynomials. The 
lemma makes use of the following properties of the Legendre polynomials: first, that 
the ith Legendre polynomial P{ has degree i; second, that the polynomials Pi form 
an orthonormal system of functions on [-1,1]. 

LEMMA 3.2. Suppose that xx,... ,xn G [-1,1] are the Legendre nodes of order 
n, and that w\,...,wn e R are the associated Gaussian weights. Given a sequence 
/l, • • • ,/n £ R, let p : [—1,1] —♦ R be the interpolating polynomial of degree n — 1 
such that p(xi) = fi for all i = 1,... ,n, and let CQ,. .. ,cn_l be the coefficients of the 
Legendre series of p; that is, 

n-l 

(17) p(x) = Y,CiPi(x), 
i=0 

where P,(x) is the ith Legendre polynomial.  Then the following relation holds: 

(18) £>/?= f p{xfdx = Y,cl 

Proof. The second equality of (18) follows from (17) and the orthonormality of the 
Legendre polynomials. The first equality may be proven as follows: the polynomial p 
has degree n-l; thus its square has degree 2n - 2. Since the Gaussian quadrature 
integrates exactly all polynomials up to order 2n - 1, it integrates p2 exactly; thus 
the first equality of (18) holds.       D 

3.3. Singular value decomposition. The singular value decomposition (SVD) 
is a ubiquitous tool in numerical analysis, which is given for the case of real matrices 
by the following lemma (see, for instance, [3] for more details). 

LEMMA 3.3. For any n x m real matrix A, there exists annxp real matrix U 
with orthonormal columns, anmxp real matrix V with orthonormal columns, and a 
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pxp real diagonal matrix S = [sy] whose diagonal entries are nonnegative, such that 
A = USV* and that su > Si+iti+i for alli = l,...,p—l. 

The diagonal entries sa of S are called singular values; the columns of the matrix 
V are called right singular vectors; the columns of the matrix U are called left singular 
vectors. 

3.4. Singular value decompositions of integral operators. This section, 
which follows [5], contains an existence theorem for a factorization of integral opera- 
tors. The operators T : L2[c,d] —► L2[a,b] to which it applies are of the form 

(19) (T/)(x) = J K(x,t)f(t)dt, 

in which the function K : [a, b] x [c, d] —► R is referred to as the kernel of the operator 
T. Throughout this section, it will be assumed that all functions are square integrable; 
the term "norm" will mean the L2 norm. 

The following theorem, which defines the factorization, is proven in a more general 
form as Theorem VI.17 in [13]. 

THEOREM 3.4. Suppose that the function K : [a,b] x [c,d] —> R is square inte- 
grable. Then there exist two orthonormal sequences of functions Ui : [a, b] —► R and 
Vi : [c, d] —* R and a sequence Si G R, for i = 1,..., oo, such that 

oo 

(20) Ä-(x,t) = 53«i(x)*««i(t) 
i=l 

and that si > S2 > • • ■ > 0. The sequence Si is uniquely determined by K. Further- 
more, the functions Vi are eigenfunctions of the operator T*T, where T is defined by 
(19), and the values Sj are the square roots of the eigenvalues ofT*T. 

By analogy to the finite-dimensional case, we will refer to this factorization as 
the singular value decomposition. We will refer to the functions u* as left singular 
functions of K (or of T), to Vi as right singular functions, and to s, as singular values. 

As is the case for the discrete SVD, this decomposition can be used to construct 
an approximation to the function K by discarding small singular values and the 
associated singular functions: 

(21) K[x,t)^,f^ui{x)sivi{t). 
»=i 

The error of this approximation can then be computed from (20): 

P oo 

(22) K(x,t) - £«,(*)*<*) =  J2 UiWsMt), 
i=l t=p+l 

and, therefore, 

(23) K(x,t) -^2ui(x)SiVi(t) 
i=l 

Using (21), integrals of the form 

(24) f K(x,t)u(x)& 
Ja 

\ i=P+l 
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can be approximated by the formula 

/•fc /.fc  p 

/   K(x, t)u(x)dx ~  /   y^Uj(x)siVi(t)u(x)dx 
Ja Ja   ^_j 

P fb 

(25) ~^2siVi(t)      Ui(x)u(x)dx. 

Thus a quadrature which is exact for each of the integrals 

(26) I Ui(x)u(x)dx, 
Ja 

for i = 1,... ,p, is an approximate quadrature for integrals of the form (24). 
Many properties of the singular functions of an integral operator can be deduced 

from the corresponding properties of eigenfunctions of integral operators; a property 
of concern in this paper is that of forming an extended Chebyshev system and is 
addressed by the following theorem. 

THEOREM 3.5. Suppose that K : [a, b] x[c,d]-»R is ETP. Then the first p left 
singular functions of K form an extended Chebyshev system for any p; likewise the 
first p right singular functions of K form an extended Chebyshev system for any p. 

Proof. Let the integral operator T : L2{c,d] —> L2[a,b] be defined by the formula 

(27) (Tf)(x) = j K(x,t)f(t)dt, 

and let the function L : [a, b] —> [a, b] be defined by the formula 

(28) L(x,t)=  f K(x,s)K{t,s)ds. 

Clearly, the integral operator S : L2[a,b] —► L2[a,b] defined by the formula S = T*T 
has the kernel L: 

(Scf>){x)= f   j K{x,s)K(t,s)ds4>(t)dt 

(29) = f L{x,t)4>(t)dt. 
Ja 

Since K is ETP, L is also ETP, due to Lemma 2.2. Thus by Theorem 2.3, the 
eigenfunctions of S constitute an extended Chebyshev system. By Theorem 3.4, these 
eigenfunctions are identical to the left singular functions of T, which proves that the 
first p left singular functions of T constitute an extended Chebyshev system for any 
p. The proof for the right singular functions is identical. D 

4. Analytical apparatus. 

4.1. Convergence of Newton's method. In this section, we observe that the 
nodes and the weights of a Gaussian quadrature satisfy a certain system of nonlinear 
equations. We then prove that the Newton method for this system of equations is 
always quadratically convergent, provided the functions to be integrated constitute 
an extended Chebyshev system. 
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Given a set of functions <j>\,..., <fon and a weight function u, the Gaussian quadra- 
ture is defined by the system of equations 

Y^Wj4>i{?j) = /   (f>\{x)u{x)dx, 

« ,.6 

Y^WjMxj)= /   <l>2{x)u{x)dx, 
3=1 Ja 

(30) 
n .;, 

^WjfaniXj) =   /    <j)2n{x)u>(x)d2 
j=l Ja 

(see Definition 2.3). Let the left-hand sides of these equations be denoted by f\ 
through /2„ ■ Then each fc is a function of the weights wi,..., wn and nodes xi,...,xn 

of the quadrature. Its partial derivatives are given by the obvious formulae 

(31) 

(32) 

dfk 
dwi = 4>k(xi), 

— = wi<f>k{xi) 

Thus the Jacobian matrix of the system (30) is 

J(xi,...,xn,wi,...,wn) 

(<j>i(xi) •••     4>\{xn) Wi^i(li) 

;            ; ; 
4>2n(xl) •••      <l>2n{xn) tUl^nfcl) 

Wn4>'\{xn)    \ 

Wn4>'2n(xn)   J 

LEMMA 4.1. Suppose that the functions <f>\,..., <f>2n form an extended Chebyshev 
system. Let the Gaussian quadrature for these functions be denoted by Wi and £{. 
Then the determinant of J is nonzero at the point which constitutes the Gaussian 
quadrature; in other words, \J(xi,..., xn, wi,..., wn)\ ^ 0. 

Proof. It is immediately obvious from (33) that 

\J(xi,...,Xn,Wi,...,Wn)\=U>i-W2 Wn-i-Wn 

4>l{xl)       ■■■       4>l(xn)        <j>'l(xi)       •••       (f>[(xn) 
(34) 

4>2n(xl) <t>2n{xn)      <l>2n(xl) <t>2n{xn) 

If ^i,..., fan form an extended Chebyshev system, then by Theorem 2.1 the weights 
wi,...,wn of the Gaussian quadrature are positive. In addition, by the definition 
of an extended Chebyshev system, the determinant in the right-hand side of (34) is 
nonzero. Thus 

(35) \J(xi,...,xn,wi,...,wn)\ 7^0. D 

Using the inverse function theorem, we immediately obtain the following corollary. 
COROLLARY 4.2.   Under the conditions of Lemma 4.1, the Gaussian weights and 

nodes depend continuously on the weight function. 
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4.2. Interpolation. This section contains two basic lemmas about interpola- 
tion. The following lemma shows that any interpolation scheme on an interval [a, b] 
whose output depends linearly on its input is characterized by a finite sequence of 
functions [a, b] —* R. 

LEMMA 4.3. Suppose L : Rn -+ L2[a,b] is an interpolation scheme with n nodes 
xi,...,xn € [a,b], and that L is a linear mapping. Then there exists a sequence of 
functions cti,...,an : [a,b] —» R such that for any vector f e Rn, with elements 
f = (fl,.-.,fn)T, 

(36) (£/)(*) = £/iai(*) 
i=l 

for all x G [a,b]. 

Proof. Let the vectors ei,..., e„ € Rn with elements e{ = (ea,..., ein)T be 
the standard basis in Rn; that is, eü = 1 for all i = 1,... ,n, and e^ = 0 for all 
i,j = 1,..., n such that i ^ j. Let the functions ax,...,an : [a,b] -> R be defined 
by the formula a* = Lei. Since the interpolation scheme L is linear, for any vector 
/ e Rn with elements / = (/i,..., /n)

T, and for any point x e [a, b], 

(Lf)(x)=(L(j^fieX)(x) 

= J2fi(Lei)(x) 
>=i 

(37) =y£fiai(x).       D 
t=i 

In the case of polynomial interpolation, the functions a{ are referred to as Lagrange 
polynomials; by analogy to that case, we will in general refer to the functions at as 
the Lagrange functions of the interpolation scheme. 

The following lemma provides an error bound for approximation of a function of 
two variables using two one-dimensional interpolation formulae, expressed in terms 
of error bounds for each one-dimensional interpolation scheme applied separately. Its 
proof is an exercise in elementary analysis and is omitted. 

LEMMA 4.4. Suppose that x1,x2,...,xn £ [a,b] and tx,t2,... ,tm € [c,d] are two 
finite real sequences, and that Qi, a2,..., an : [a, b] -> R and ßx, ß2,..., ßm : [c, d] -» R 
are two sequences of bounded functions. Suppose further that Lx : Rn -» L°°[a, b] is 
an interpolation formula with the nodes xi,...,xn and Lagrange functions ai,...,an, 
and Li : Rm —> L°°[c,d] is an interpolation formula with the nodes ti,...,tm and 
Lagrange functions ßlt...,ßm. Suppose that r\ € R is such that 

n 

(38) 53la'(a;)l<r? 
»=i 

for all x e [a, b], or 

m 

(39) El&WIO? 
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for all t e [c,d\. Finally, suppose that K is a function [a, b] x [c, d] —► R, and that for 
all x £ \a,b] and t £ [c,d], 

(40) 

and 

(41) 

Then 

(42) 

Kixrf-^KixuQoiix) 
t=i 

<£ 

*:(*,<)-£tf(z,*;)ß(t) <£. 

t=i j=i 
<s(l + v) 

for all x £ [a, b] and t € [c, d]. 

4.3. Approximation of SVD of an integral operator. This section describes 
a numerical procedure for computing an approximation to the SVD of an integral 
operator. 

The algorithm uses quadratures which possess the following property. 
DEFINITION 4.1. We will say that the combination of a quadrature and an in- 

terpolation scheme preserves inner products on an interval [a, b] if it possesses the 
following properties. 

(i)  The nodes of the quadrature are identical to the nodes of the interpolation 
scheme. 

(ii) The function which is output by the interpolation scheme depends in a linear 
fashion on the values input to the interpolation scheme. 

(iii) The quadrature integrates exactly any product of two interpolated functions; 
that is, for any two functions f, g : [a, b] —► R produced by the interpolation scheme, 
the integral 

(43) 
Ja 

f(x)g(x)dx 

is computed exactly by the quadrature. 
Quadratures and interpolation schemes which possess this property include the 

following. 
EXAMPLE 4.1. The combination of a (classical) Gaussian quadrature at Legendre 

nodes and polynomial interpolation at the same nodes preserves inner products, since 
polynomial interpolation on n nodes produces an interpolating polynomial of order 
n — 1, the product of two such polynomials is a polynomial of order In — 2, and a 
Gaussian quadrature integrates exactly all polynomials up to order 2n — 1. 

EXAMPLE 4.2. If an interval is broken into several subintervals, and a quadrature 
and interpolation scheme which preserves inner products is used on each subinterval, 
then the arrangement as a whole preserves inner products on the original interval. 
(This follows directly from the definition.) 

EXAMPLE 4.3. The combination of the trapezoidal rule on the interval [0, 2TT] and 
Fourier interpolation (using the interpolation functions 1, cosx, sinz, cos2x, sin2:r, 
..., cosnx, sinnx^ preserves inner products. 
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The algorithm takes as input a function K : [a, b] x [c, d] —> R. It uses the following 
numerical tools: 

(i) A quadrature and an interpolation scheme on the interval [a, b] which pre- 
serve inner products. Let the weights and nodes of this quadrature be denoted by 
wf,..., w* G R and xi,...,xn G [a, b], respectively. Let the Lagrange functions (see 
section 4.2) of the interpolation scheme be denoted by Q1? ..., an : [a, b] —► R. 

(ii) A quadrature and an interpolation scheme on the interval [c, d] which pre- 
serve inner products. Let the weights and nodes of this quadrature be denoted by 
»ir-^m £ K and ti,...,tm € [c,d\, respectively. Let the Lagrange functions of 
the interpolation scheme be denoted by ßi,...,ßm : [c,d] —> R. 

As will be shown below, the accuracy of the algorithm is then determined by the 
accuracy to which the above two interpolation schemes approximate K. 

The output of the algorithm is a sequence of functions in,...,up : [a,b] —> R, 
a sequence of functions vi,...,vp : [c,d\ -+ R, and a sequence of singular values 
si,..., sp € R, which form an approximation to the SVD of K. 

Description of the algorithm. 
(i) Construct the n x m matrix A = [ay] defined by the formula 

(44) Oij = KfatAy/v^wj. 

(ii) Compute the SVD of A to produce the factorization 

(45) A = USV, 

where U = [u^] is an n x p matrix with orthonormal columns, V = [vij] is an m x p 
matrix with orthonormal columns, and S is apxp diagonal matrix whose jth diagonal 
entry is Sj. 

(iii) Construct the n x p matrix Ü = [üy ] and the m x p matrix V = [u0] defined 
by the formulae 

(46) uik = Uik/y/wf, 

(47) Vjk=vjk/Jwt
j. 

(iv) For any points x G [a, b] and te[c,d\, evaluate the functions uk : [a, b] -+ R 
and Vk : [c, d\ —> R via the formulae 

n 

(48) uk(x) = J2tik-c*i(x), 

m 

(49) »*(*) = £*;*•&■(*). 

for all k = 1,... ,p. 

THEOREM 4.5. Suppose that the combination of the quadrature with weights 
and nodes wf,...,w% G R and xi,..., x„ G [a,b], respectively, and the interpolation 
scheme with Lagrange functions ai,...,an : [a,b] -» R, preserves inner products on 
[a,b]. 

Suppose in addition that the combination of the quadrature with weights and nodes 
w1,...,w

t
meR and tj,..., tm G [c, d], respectively, and the interpolation scheme with 

Lagrange functions ßu... ,ßm : [c, d] -* R, preserves inner products on [c,d]. 
For any function K : [a,b] x [c,d] -» R, let Ui : [a,b] -* R, vt : [c,d] -> R, and 

Si G R be defined in (44)-(49), for all i = 1,..., p. Then 
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(i)  The functions Ui are orthonormal, i.e., 

(50) /   Ui(x)uk(x)dx = 8ik 

for alli,k = l,...,p, with 6ik the Kronecker symbol (Sij = lifi=j,0 otherwise). 
(ii)  The functions Vi are orthonormal, i.e., 

(51) J   Vi(t)vk{t)dx = 6ik 

for alli,k = 1,... ,p. 
(iii)  The function K : [a, b] x [c, d] —* R defined by the formula 

(52) K(x,t) = J2sjuj(x)vj(t) 

is identical to the function produced by sampling K on the grid of points (xi,tj), then 
interpolating with the two interpolation schemes. That is, 

n     m 

(53) K(x,t) = ££#(*«, ^(aOßW. 
i=l j=l 

Proof. We first prove (53). Combining (48), (49), and (52), we have 

P /  n \     / m ^ 

K(x,t) = J>    ^Ufcfajo^s)       ^(«^(t) 
fc=i      \t=i /   \j=i 

n     m     /   p \ 

= EE £«*(*«)«*"*(«'") ^(XJä-W 
t=ij=i \fc=i / 

n     m     /   p   \ 
= EE Dwv^FwfWv^) ^(*)ß(o 

n     m    / p 
= EE    Eu«k^W\/™H) <*i(*)&(*) 

i=i j=i \fc=i / 
n      m 

(54) = E E Owv^R) «<(*)&(*)• 
i=l j=l 

Now (53) follows from the combination of (54) and (44). 
We now demonstrate the orthonormality of the functions u». Since these are 

functions produced by interpolation, and since the quadrature on [a, b] is assumed to 
integrate exactly all products of pairs of interpolated functions, 

j   Ui{x)uk{x)dx = ^2,wx
jui{xj)uk{xj) 

Ja j=l 
n     

= EK (uJi/yfä)(uJk/yfij) 

n 

(55) =EuJ'iUJ'fc- 
J'=l 
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Since the last sum in (55) is the inner product of two columns of the orthonormal 
matrix U (see (45)), 

(56) /  Ui(x)uk(. 
Ja 

x)dx = 8ik- 

The orthonormality of the functions u; is proven in the same manner. D 
Remark 4.1. Obviously, the above proof approximates the SVD of the operator 

T : L2[c,d] —> L2[a,b] with the kernel K by constructing an approximation f with 
kernel K to the operator T that is of finite rank, and constructing the exact SVD of 
the latter. 

OBSERVATION 4.2. In the preceding proof, the assumption that each combination 
of quadrature and interpolation scheme preserves inner products was used only to 
demonstrate the orthonormality of the corresponding singular functions. Thus if the 
conditions of Theorem 4.5 hold, with the exception that the quadrature on [a, b] does 
not preserve inner products, then (51) and (53) hold (but, in general, (50) does not). 

Remark 4.3. Theorem 4.5 and Lemma 4.4 generalize trivially to higher dimen- 
sions. One-dimensional quadratures and interpolation formulae have to be replaced 
with their multidimensional counterparts; otherwise, the proofs are unchanged. 

5. Numerical algorithm. This section describes a numerical algorithm for the 
evaluation of nodes and weights of generalized Gaussian quadratures. The algorithm's 
input is a sequence of functions 0i,...,<£2n : [a,b] -* R which form an extended 
Chebyshev system on [a, b], and a weight function Wi : [a,b] —> R+. Its output is the 
weights and nodes of the quadrature. The main components of the algorithm are as 
follows (not listed in order of execution). 

(i) Newton's method is used to solve (30) which defines the Gaussian quadra- 
ture. 

(ii) An adaptive version of the continuation method (section 3.1.1) is used to 
provide starting points for Newton's method. The continuation scheme used here is 
different from that used in [10]; the details of the continuation scheme and of the 
method of adaption are described below. 

(iii) The algorithm of section 4.3 can be used as an optional preprocessing step, 
which takes as input a kernel of an integral operator and produces its singular func- 
tions. The first 2n of the left singular functions are then used as input to the main 
algorithm. 

5.1. Continuation scheme. The continuation scheme used is as follows. Let 
the weight functions u : [0,1] x [a, b] -> R+ be defined by the formula 

n 

(57) u(a,x) - QWI(X) + (1 - a) ]P<5(x - Cj), 
i=i 

where wx is the weight function for which a Gaussian quadrature is desired, 6 denotes 
the Dirac delta function, and the points Cj e [a, b] are arbitrary distinct points. These 
weight functions have the following properties. 

(i) With a = 1, the weight function is equal to the desired weight function u>i, 
due to (57). 

(ii) With a = 0, the Gaussian weights and nodes are 

(58) Wj = 1, 

(59) Xj = ch 
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for j = 1,..., n, whatever the functions <fo axe (since w(0,x) = 0, unless x = Cj for 
some j G [l,n]). 

(iii) The quadrature weights and nodes depend continuously on a (by Corollary 
4.2). 

The intermediate problems which the continuation method solves are the Gaus- 
sian quadratures relative to the weight functions u>(a, *). The scheme starts by setting 
Q = 0, then increases a in an adaptive manner until a = 1, as follows. A current 
step size is maintained, by which a is incremented after each successful termination 
of Newton's method. After each unsuccessful termination of Newton's method, the 
step size is halved and the algorithm restarts from the point yielded by the last suc- 
cessful termination. After a certain number of successful steps, the current step size 
is doubled. (Experimentally, the current problem was found to be well suited to an 
aggressive mode of adaption: in the authors' implementation, the initial value of the 
step size was chosen to be one, and the step size was doubled after a single successful 
termination of Newton's method.) 

5.1.1. Comparison to continuation method of [10]. The continuation 
method of this paper differs from the continuation method of [10] in that a different 
part of the system of equations is changed as a function of the continuation variable 
a. In [10], the thing changed is not the weight function u but rather the functions 
4>i, ■ • • , 4>2n which the quadrature is to integrate properly. Each of these functions is 
altered according to the formula 

(60) 4>i(a,x) = a^(x) + (1 - a)Pt{x)t 

where tpi,..., ip2n are the functions for which the quadrature was desired, and where 
Pi,..., Pn are some sequence of functions for which a Gaussian quadrature is known 
(for instance, polynomials). That continuation method has the drawback that the 
functions 4>i,... ,<f>2n do not necessarily form an extended Chebyshev system when 
0 < a < 1, even if the functions ipi,..., V^n form an extended Chebyshev system. For 
instance, if the quadrature is to integrate two functions, ipi — P2, and ^2 = Pi, then 
when a = 1/2, the functions <£i and 4>2 are identical, so the Jacobian matrix (33) is 
singular, whatever the (single) quadrature node xj might be. 

5.1.2. Starting points. The choice of the points Cj was left indefinite above. 
In exact arithmetic the algorithm would converge for any choice of distinct points 
(see Lemma 4.1). However, the number of steps of the continuation method, and thus 
the speed of execution, is affected by the choice. More importantly, the numerical 
stability of the scheme might be compromised due to poor conditioning of the matrix 
J (see (33)). Indeed, while Lemma 4.1 guarantees that the matrix J is nonsingular, it 
says nothing about its condition number. Thus, in the authors' implementation, the 
points Cj used for the production of the quadrature of order n were computed from 
the nodes Xj of the quadrature of order n — 1 by the formulae 

(61) Ci =Xi, 

(62) Ci = (Xj_! + Xi)/2, 

(63) Cn. =Xn_i. 

t = 2,...,n-l, 

With this choice, no failures to converge have been encountered in the authors' expe- 
rience. 



714 N. YARVIN AND V. ROKHLIN 

6. Numerical examples. A variety of quadratures were generated to illustrate 
the performance of the above algorithm. In each case the preprocessing step of pro- 
ducing singular functions was used. This step requires two sets of quadratures and 
interpolation schemes, which must approximate the desired kernel to the desired ac- 
curacy. These quadratures and interpolation schemes were chosen so that the ap- 
proximation was accurate to about the precision of the arithmetic that was used. 
The following combination of quadrature and interpolation scheme which preserves 
inner products was used: the interval of integration was divided into several subinter- 
vals, and a combination of a (classical) Gaussian quadrature at Legendre nodes and 
polynomial interpolation was used on each subinterval. 

In each of the following examples, the calculations were done in extended precision 
(Fortran REAL* 16) arithmetic, with the exception of the last example, which was done 
in double precision (REAL*8) arithmetic. 

6.1. Exponentials. In this example we construct quadratures for the integral 

(64) [" e~xtdx 
Jo 

under the condition that 1 < t < 500. In this case, the corresponding kernel K : 
[0, oo) x [1,500] -> R is given by 

(65) K(x,t) = e~xt 

and is ETP; thus its singular functions form an extended Chebyshev system. The 
measured maximum absolute error of integration of the produced quadratures, over 
the range 1 < t < 500, is given, for selected n, in the following table. 

Error 
8 14 23 27 

0.827E-03    0.726E-04    0.366E-07    0.356E-12    0.323E-14 

The weights and nodes of the 27-point quadrature are included as Table 6.1; the 
remaining weights and nodes are available electronically at the URL 
http://www.netlib.org/pdes/multipole/wts500.f. 

6.2. Complex exponentials. Here, we design quadratures for a new version [5] 
of the two-dimensional fast multipole method. These quadratures are for the integral 

/■OO 

(66) /    e-"dx, 
Jo 

under the condition that z G C is constrained to He in the region D of the complex 
plane which consists of the rectangle [1,4] x [-4,4] with a 1 x 1 square deleted from each 
of its two left-hand corners, as depicted in Figure 1. Since both the true integral (equal 
to 1/z) and the quadrature which approximates the integral are complex analytic 
on that region, due to the maximum modulus principle the maximum error of the 
quadrature is achieved on the boundary 6D of the region. Accordingly, the kernel 
whose singular functions were computed was K(x, z) = e~xz, with z varying over 6D. 
A brief examination of the resulting singular functions shows that they do not form 
a Chebyshev system; if they did so, the ith function would have z - 1 zeros, yet it 
has many more. Thus, the algorithm is not guaranteed to work; however, it did so. 
The measured maximum absolute error of integration of the produced quadratures is 
given, for selected n, in the following table. 
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TABLE 6.1 
27-point generalized Gaussian quadrature for decaying exponentials. 
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Node (ij) Weight (wi) 
0.5378759010624780E-03 
0.2860176825815242E-02 
0.7148658617716300E-02 
0.1360965515937845E-01 
0.2257800188133212E-01 
0.3456421989535069E-01 
0.5032042618508775E-01 
0.7092509447124836E-01 
0.9788439120828463E-01 
0.1332509921950535E+00 
0.1797695570864978E+00 
0.2410654714132133E+00 
0.3218961915636380E+00 
0.4284852078938826E+00 
0.5689615509235298E+00 
0.7539347736933301E+00 
0.9972472224438443E+00 
0.1316964566299846E+01 
0.1736698582009859E+01 
0.2287418444638146E+01 
0.3010034073439038E+01 
0.3959315495048493E+01 
0.5210381702393131E+01 
0.6870768194824406E+01 
0.9106577764323245E+01 
0.1221294512896673E+02 
0.1689348652665484E+02 

0.1383311204046008E-02 
0.3279869733166365E-02 
0.5330932895600203E-02 
0.7646093110803760E-02 
0.1037458793227033E-01 
0.1372178039022047E-01 
0.1796868836009351E-01 
0.2348971809947674E-01 
0.3076860552710760E-01 
0.4041894092839717E-01 
0.5321827718681367E-01 
0.7016094768858448E-01 
0.9253048536912244E-01 
0.1219928996130354E+00 
0.1607156476580828E+00 
0.2115215602167892E+00 
0.2780925850550500E+00 
0.3652478333806065E+00 
0.4793398853949993E+00 
0.6288554258416082E+00 
0.8254021100491956E+00 
0.1085495633209734E+01 
0.1434174907278760E+01 
0.1913323186889750E+01 
0.2604342790201154E+01 
0.3708436699287805E+01 
0.6023086156615004E+01 

n 7 10 17 26 32 
Error 0.107E-02 0.398E-04 0.156E-07 0.801E-12 0.282E-14 

The weights and nodes of the quadratures are available electronically at the URL 
http://www.netlib.org/pdes/multipole/pwts4.f. 

6.3. Exponentials multiplied by J0. 
are constructed for integrals of the form 

In this example, quadrature formulae 

(67) 
Jo 

I0(xy)e xtdx, 

under the condition that t e [1,500] and y G [0, t — 1]; these formulae were designed 
to be used in a version of the one-dimensional fast multipole method which is used 
in an algorithm [6] for the fast Hankel transform. In this case the singular functions 
produced by the precomputation stage were extremely similar to those for exponen- 
tials alone; unlike in the case of complex exponentials, it is possible that they form 
a Chebyshev system. In any case, the algorithm converged, producing a quadra- 
ture which required two more nodes for double precision accuracy than were required 
for the integration of exponentials alone. The measured maximum absolute error of 
integration of the produced quadratures is given, for selected n, in the following table. 

n 6 8 14 24 29 
Error 0.997E-03 0.892E-04 0.900E-07 0.925E-12 0.299E-14 
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4 

3+ 

-3+ 

-4 

D 

1       2       3 

FlG. 1. Range of coefficient z of complex exponentials to be integrated. 

The weights and nodes of the quadratures are available electronically at the URL 
http://www.netlib.org/pdes/multipole/swts500.f. 

6.4. Exponentials multiplied by J0. Here, we construct quadratures for the 
integral 

(68) /   Mxv) 
Jo 

e~xtdx. 

see 

under the conditions that t e [1,4] and y G [0,4\/2], and where J0 denotes the Bessel 
function of the first kind of order zero. These quadratures are used in a new version 
[4] of the three-dimensional fast multipole method. J0 is given by the well-known (; 
for instance [1]) formula 

1   t* 
(69) Mv)=-       cos{y cos 9)d9. 

* Jo 

Substituting (69) into (68) yields the integral 

/     f — /   cos(xy cos 6)d6 ) e~xtdx 

(70) =-/     /     cos(xy cos 0)e-xtdxdO. 

Thus a quadrature accurate for the integral 

J/»oo 

'     cos(xy)e-Itdx, 
o 
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under the conditions that t € [1,4] and y e [0,4%/2], is also accurate for the integral 
(68) under the same conditions on y and t. Since the function cos{xy)e~xt is a 
harmonic function of y and t, by the maximum modulus principle the maximum 
error of a quadrature for (71) lies on the boundary 6D of the rectangular region t € 
[1,4], y G [0,4\/2]- Accordingly, the kernel whose singular functions were computed 
was K(x,z) = cos(xy)e~xt, with (t,y) varying over 6D. As in the case of complex 
exponentials, the singular functions have too many zeros to form a Chebyshev system; 
however, the algorithm converged. 

The measured maximum absolute error of integration of the produced quadratures 
is given, for selected n, in the following table. 

n 8 12 21 31 40 
Error 0.162E-02 0.709E-04 0.553E-07 0.195E-10 0.147E-13 

The weights and nodes of the quadratures are available electronically at the URL 
http://www.netlib.org/pdes/multipole/vwts. f. 

6.5. Numerical observations. The following observations were made in the 
course of our numerical experiments. 

(i) The number of continuation steps required is highly variable; in many cases, 
only one step sufficed to produce the quadrature; less frequently, up to fifty or so 
continuation steps were required. This variability occurred even between quadratures 
for successive numbers n of nodes, with the same weight function and kernel K. 

(ii) The algorithm worked in the cases where Theorem 2.1 applied, and also 
in cases where it did not. In the latter cases, it is conceivable that the resulting 
quadratures would have negative weights or that they would not be unique. However, 
all computed weights were positive, and, while no systematic attempt was made to 
look for nonuniqueness of the quadratures, no instance of it was observed. 

7.  Generalizations and applications. 
(i) The success of the algorithm in instances where Theorem 2.1 does not ap- 

ply suggests that further theoretical investigation of conditions for the existence of 
generalized Gaussian quadratures would be profitable. 

(ii) An obvious generalization of these results is to quadratures for integrals in 
more than one dimension. However, such an extension does not seem to have been 
explored classically; the authors are investigating a generalization of Theorem 2.1 for 
multidimensional quadratures. 

(iii) An obvious application of the algorithm of this paper is for the efficient 
evaluation of functions represented by their integral transforms (see sections 6.1, 6.2, 
6.3, 6.4 above, as well as [5] and [4]). The method of steepest descent in the numerical 
complex analysis provides a wide field of applications for such algorithms. 

(iv) An entirely different field of applications involves the numerical solution of 
integral equations with singular kernels; of particular interest are boundary integral 
equations of scattering theory on regions with corners. The authors are currently 
pursuing this direction of research. 

REFERENCES 

[1]  M. ABRAMOWITZ AND I. STEGUN, Handbook of Mathematical Functions, Applied Mathematics 
Series, National Bureau of Standards, Washington, DC, 1964. 



718 N. YARVIN AND V. ROKHLIN 

[2]  F. GANTMACHER AND M. KREIN,  Oscillation Matrices and Kernels and Small Oscillations 
of Mechanical Systems, 2nd ed., Gosudarstv. Izdat. Tehn-Teor. Lit., Moscow, 1950 (in 
Russian). 

[3]  G. H. GOLUB AND C. H. VAN LOAN, Matrix Computations, Johns Hopkins University Press, 
Baltimore, 1983. 

[4]  L. GREENGARD AND V. ROKHLIN, A neru version of the fast multipole method for the Laplace 
equation in three dimensions, Acta Numerica, 6 (1997), pp. 229-269. 

[5]  T. HRYCAK AND V. ROKHLIN, An Improved Fast Multipole Algorithm for Potential Fields, 
Research Report 1089, Computer Science Department, Yale University, New Haven, CT, 
1995. 

[6]  S. KAPUR AND V. ROKHLIN, An Algorithm for the Fast Hankel Transform, Technical Report 
1045, Computer Science Department, Yale University, New Haven, CT, 1995. 

[7]  S. KARLIN, The existence of eigenvalues for integral operators, Trans. Amer. Math. Soc, 113 
(1964), pp. 1-17. 

[8]  S. KARLIN AND W. J. STUDDEN, Tchebycheff Systems with Applications in Analysis and Statis- 
tics, John Wiley (Interscience), New York, 1966. 

[9]  M. G. KREIN, The Ideas of P. L. Chebyshev and A. A. Markov in the Theory of Limiting 
Values of Integrals, Amer. Math. Soc. Transl. 2, AMS, Providence, RI, 1959, pp. 1-122. 

[10]  J. MA, V. ROKHLIN AND S. WANDZURA, Generalized Gaussian quadrature rules for systems of 
arbitrary functions, SIAM J. Numer. Anal., 34 (1996), pp. 971-996. 

[11]  A. A. MARKOV, On the limiting values of integrals in connection with interpolation, Zap. Imp. 
Akad. Nauk. Fiz.-Mat. Otd. (8) 6 (1898), no. 5 (in Russian); pp. 146-230 of [12]. 

[12]  A. A. MARKOV, Selected Papers on Continued Fractions and the Theory of Functions Deviating 
Least from Zero, OGIZ, Moscow-Leningrad, 1948 (in Russian). 

[13]  M. REED AND B. SIMON, Methods of Modern Mathematical Physics, Vol. 1, Academic Press 
New York, 1980. 

[14]  J. STOER AND R. BULIRSCH, Introduction to Numerical Analysis, 2nd ed., Springer-Verlag New 
York, 1993. 



o    c/y>««.x     ,^      J^p 

AN INTEGRAL EVOLUTION FORMULA FOR THE WAVE 
EQUATION* 

BRADLEY ALPERTt, LESLIE GREENGARD*, AND THOMAS HAGSTROM§ 

Abstract. We present a new time-symmetric evolution formula for the scalar wave equation. It 
is simply related to the classical D'Alembert or spherical means representations, but applies equally 
well in two space dimensions. It can be used to develop stable, robust numerical schemes on irregular 
meshes. 

1. Introduction. It is notoriously difficult to construct stable high-order ex- 
plicit marching schemes for the wave equation on irregular meshes. The time-step 
restriction is typically determined by the smallest cell present in the discretization. In 
this note, we describe a new approach to the construction of stable, explicit schemes, 
based on a simple time-symmetric evolution formula. 

Initially we consider the Cauchy problem in TLd, 

utt = Au, 

(1-1) u(x,0)=«o(x), 

uf(x,0) =v0(x), 

where A denotes the Laplacian operator. In one space dimension, the solution can be 
written using D'Alembert's formula as 

1 fx+t 

(!-2) u(x,t) = -(u0(x - t) + u0(x + t)) + /       v0{s)ds. 

We can eliminate the term involving the data v0(x) by using the time-symmetric form: 

(!-3) u{x, t) + u(x, -t) = u(x - t, 0) + u{x + t, 0). 

In three dimensions, the analog of (1.3) is the spherical means formula [2, 4, 5] 

(1-4) u(x,t)+u(x,-t) = %- 
at 

—  / u{y,0)da 
4TT 7|y_x|=t 

where da is an element of surface area. In two dimensions, the situation is slightly 
more complex because of the absence of a strong Huygen's principle.   The solution 
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depends not just on function values over the boundary of the disk of radius t. but on 
all values in its interior: 

(1.5) u(x,t) +u(x, -t) = 
d_ 

di 2~ J\y-x\<t \A2 - \x 

0) 
fdy 

For numerical computation, formulas of the type (1.3), (1.4), and (1.5) are not 
widely used because they do not suggest a procedure at physical boundaries and are 
not easily extended to more general partial differential equations. 

2. A central difference evolution formula. Consider the Fourier transform 
of the wave function u(x, t), namely 

U{k.t)=(-±=)    f   e-ik*u(x,t)dx. 
\V2nJ   JRd 

The partial differential equation in (1.1) can then be replaced by 

Utt(k,t) = -\k\2U{k,t). 

Solving this ordinary differential equation, we obtain 

U(k, t) + U(k, -t) = 2U{k, 0) cos(|k|t) 

or 

(2.1)        U(k,t)-2U(k,0) + U(k,-t) = 
2cos(lk|f),-2 

-IkP' 
(-|k|2)£/(k,0). 

Our main result follows. 
THEOREM 2.1.  Let u(x,t) denote a solution to the homogeneous wave equation 

utt = Aw 

in Rd.   Then 

(2.2)        u(x,t)-2u(x,0) + u(x,-t)= f Gd(\x-y\,t)Au(y,0)dy, 
•/|y-x|<( 

where 

(2.3) 

(2.4) 

(2.5) 

Gi(r,t)=t-r 

G2(r, t) = ln(t + y/t2 - r2) - In r 

G3(r,0 = - 

Proof. The formula (2.2) is obtained from the convolution theorem by trans- 
forming (2.1) back to physical space. We provide a few more details for two space 
dimensions, where we need to evaluate the kernel 

G2(|x|,t) _L f°° f 
OO J — oo    . 

'2cosflk|t) -2 
-IkP 

„tkx dk. 
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Changing to polar coordinates, we have 

OO       /■27T 

G2(r,t) _L f   f 
2W0    J0 

2-2 cos(fo) 

k2 eikrcos^-^kdkd(p 

-f Jo 

2-2 cos(kt) 
Jo(kr) dk. 

where k = (kcoscf), ksincß), x = (rcos0,rsin0), and J0 denotes the Bessel function 
of order zero. The desired result now follows from the formula ([1], 6.693) 

°° dk 
Jl/(kr)cos(kt)-—- 

o k 

1       / •    ^ — cosiu arcsin -) t < r 

 ,            — cos — t > r. 
V(t + jw^7*y     2 - ' 

with some care in taking the limit v —> 0. D 
REMARK 2.2. Integration by parts and Green's identities can be used to recover 

the formulas (1.3), (1.4), and (1.5) from (2.2). 
REMARK 2.3. Our evolution scheme can be viewed as an integral form of the 

widely-used Lax-Wendroff method. The latter method uses central differencing in 
time to generate the series 

t4 t6 

u(x, t) - 2u(x, 0) + u(x, -t) = t2utt(x, 0) + —u«tt(x, 0) + —u„„„(x, 0) + ■ • •. 

Replacing the time derivatives with powers of the Laplacian, one obtains 

t4     '' te 

u(x, t) - 2u(x, 0) + u(x, -t) = t2Au(x, 0) + — A2u(x, 0) + —- A3u(x, 0) + • • •. 
12, doU 

Once a numerical approximation is chosen for the Laplacian operator, the Lax- 
Wendroff scheme achieves arbitrary order accuracy in time by incorporating higher 
and higher powers of the Laplacian in a three time level scheme. Stability and spatial 
accuracy depend, of course, on how the Laplacian is computed. 

3. Forcing. We next consider the wave equation with a source term 

(3-1) utt = Au + f 

which from Fourier transformation (u —» U, f —► F) becomes 

Utt(k,t) = -\k\2U(k,t) + F(k,i), 

whose solution is given by 

U(k, t)-2U(k, 0)+[/(k, -t) = 2 [cos(|k|t)-l] U(k, 0)+ f Sin(|k|^~|s|)) F(k, s) ds. 
J-t \k\ 

The identity 

sin(|k|f) _9 fcos(|k|£)-l 
~dt    ~" |k| dt V       |k|2 

and integration by parts, in combination with (2.2), now yield 
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THEOREM 3.1. Let u(x,t) denote a solution to the inhomogeneous wave equation 
(3.1) in Rd. Then 

(3.2) u(x,0-2u(x,0) + u(x,-i)=  f Grf(|x-y|,0[Au(y,0) + /(y.O)]dy 
•%-x|<t 

+ - /   signum(s) / Gd(\x-y\,t-\s\)f'(y.s)dyds, 
z J-t "/|y-x|<t-|»| 

where Gd is given in (2.3)-(2.5) and f'(x,t) = df(x.t)/dt. 
REMARK 3.2. The derivative /' of the forcing term may be analytically removed 

from (3.2) by integration, yielding formulas that differ somewhat for d = 1,2,3. In 
three dimensions, for example, the double integral reduces to the particularly simple 
form 

1 f /(y, |x - y] - t) - 2/(y, 0) + /(y, t - [x - y|) J 
2 J\y-x\<t l*-y| y' 

4. Discretization. In order to use formula (2.2) or (3.2) for computation, we 
need to evaluate the integral 

(4-1) <3u(x)= / Gd(\x-y\,t)Au(y,0)dy, 
J\y-x\<t 

for each discretization point x. In this brief note, we will restrict our attention to the 
one-dimensional case. Away from physical boundaries, there are three clear options: 

1. Use a quadrature formula designed for formula (4.1): 

(4-2) Qu{x)= (t-\y-x\)uyy(y,0)dy. 
Jx-t 

2. Integrate by parts once to obtain 

(4.3) Qu(x) = - uy(y,0)dy+ uy(y,0)dy. 
Jx-t Jx 

3. Integrate by parts twice to obtain 

Qu{x) = u(x - t,0) - 2u(x,0) + u{x + t,0). 

All three formulas are exact (the last yielding the time-symmetric scheme (1.3)). 
In the first case, one needs to approximate uxx within the domain of dependence. In 
the second case, one needs to approximate ux within the domain of dependence. In 
the third case, one needs to interpolate u(x - t, 0) and u(x +1,0) from the possibly 
irregular mesh points where u{x, 0) is known. The stability of each scheme will depend 
on how the interpolation/approximation problem is handled. 

To demonstrate the value of the integral formulation, we suppose that we are 
solving the problem (1.1) with the Dirichlet boundary condition u(0,t) = g(t). For 
the sake of simplicity, we assume that the grid spacing in x is equal to the time step 
t. The only irregular point is the first grid point xx which is arbitrarily close to the 
boundary x = 0, creating what is often referred to as a small cell problem (Fig. 4.1). 
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FlG. 4.1. An irregular mesh in one space dimension. The grid points xi,X2,23,... are eq- 
uispaced, but the first grid point is near the physical boundary x = 0. At regular grid points, the 
symmetric stencil (1.3) is used. For the node x\, the interpolator/ scheme described in section 4.2 
uses the indicated stencil. It requires values at the irregular points marked by darkened circles. 

time = t-x 

time = x ■ t 

Xl X2 X3 X4 X5     '" 
-& e e -e e-  time = t 

-e-9 B &: e £>-  time = 0 

-& e e e e- time = -t 
I 1 

t 
x = 0 

For nodes other than xi, we can use any of the three options outlined above. For 
x < xi <t, let us define 

(4.4) ü(x, r) = 2u(x, 0) - u(i, -T) + f      (r - \y - x\) uyy(y, 0) dy. 
Jo 

Note that ü satisfies the wave equation exactly, under the assumption that the function 
uxx(x,0) is extended outside the domain x > 0 by zero. Taking into account the 
Dirichlet data, it is straightforward to verify that the exact solution is 

(4-5) u(x1,t)=ü(x1,t)+g{t-x1)-ü(0,t-xi). 

4.1. Quadrature schemes. The most straightforward use of the quadrature 
approach is to compute uxx at time t = 0 by a finite difference method of fcth order 
accuracy. We can then integrate the formula (4.2) or (4.4) exactly for a polynomial 
approximant of uxx of degree k - 1. For k = 2 this involves computing the second 
derivative using the usual 3-point stencil at regular grid points and a one-sided 4-point 
stencil for the irregular points x = 0, n. The necessary quadratures are easy to derive 
for a piecewise linear approximation of uxx. 

4.2. Interpolation schemes. Integrating by parts yet again, we can rewrite 
the formula (4.4) for ü(xi,t) as 

Ufa, t) = -u(x, -t) + u{xi +t,0)+ u(0,0) - (t - uK(0,0). 

Combining this result with (4.5), we have 

u(xut) = ~u(xi,-t) +u(xi +t,0) 

(4-6) +g{t - xi) + g(-t + xx) + u(t - X!,0). 

For regular grid points, we use the exact formula (1.3). Once we choose a method for 
approximating the values g{t-x{), g{-t + x{), and u(t-i!,0), we have a well-defined 
evolution scheme. In our numerical experiments, we assume the Dirichlet data g(t) is 
known analytically, so that we only need to interpolate u(t - n,0). 

4.3. Extrapolation schemes. As a final alternative, one can try to use the 
time symmetric formula (1.3) for all grid points. This involves the value u(xx - t,0), 
which requires extrapolation from the known data at x = 0, x\, x2,... 
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TABLE 5.1 
Performance of the quadrature, interpolation,  extrapolation, and leapfrog schemes.   The first 

column lists the number of submtervals in the uniform grid region.    The second through the fifth 
columns list the L2 error from using the indicated evolution scheme after N steps. 

N E2(Q2) E2VI) £2(/3) E2(X1) E2(LF2) 
16 0.58- IO-4 0.31 • 10-b 0.79-10-iU 0.17   10b4 0.35 ■ 10'° 
32 0.12 -10-4 0.16-10-6 0.97 -10-11 0.39-10104 0.42-10150 

64 0.28   lO"5 0.81 ■ IO-7 0.11 • 10-" _ _ 
128 0.67-lO-6 0.41 • IO-7 0.14   10-12 _ _ 
256 0.16 -10-6 0.19- IQ"7 0.27   10-13 - ■ 

5. A numerical example. We have implemented simple versions of the various 
methods described above: the second order quadrature scheme (Q2), the interpolation 
scheme using linear and cubic interpolation (II, 13), and the extrapolation scheme 
using linear approximation (XI). For the sake of comparison, we use the same values 
of uxx as in the quadrature approach, but march using the simplest leapfrog scheme 
[3] 

(5.1) ü(x, t) = 2u(x, 0) - u(x, -t) + t2uxx(x, 0). 

We will denote this method by LF2. 
We consider the wave equation on [0,1] as an initial/boundary-value problem 

with exact solution sin(x - t) + sin(x - t - \).   We set xx = 1.0 • 10-5, xN+l = 
I - 1.0 ■ 10-6, and place N - 1 equispaced points on the interval [xi,xN+1]. With 
N = 16,32,64,128,256, both the first and last cells are extremely small in comparison 
with At = (xN+i - xi)/N. The calculation is terminated after Ar steps, at which 
point we measure the L2 error of the solution. The scheme used at the right boundary 
(x = 1) is analogous to the one described above at the left boundary (x = 0). 

Results of the methods Q2, II, 73, XI, LF2 are summarized in Table 5.1. 
Q2, II, and IS appear to be stable, while both the extrapolation and leapfrog 

schemes diverge.  It is also worth noting that Q2 is globally second order accurate, 
II is globally first order accurate, and 13 is globally third order accurate. This is 
consistent with a straightforward local error analysis. The reason that the first order 
scheme II is more accurate than Q2 for small N is that we are using an exact formula 
away from the irregular nodes in the former and a second order accurate quadrature 
at all points in the latter. 

6. Conclusions. We have derived a new exact representation for solutions of 
the wave equation. Theorem 2.1 and theorem 3.1 may be of analytical interest in 
their own right, but we have concentrated in this note on exploring some numeri- 
cal consequences. We believe that marching schemes based on this approach have 
advantageous stability properties when compared to existing methods, most notably 
in removing the "small cell" problems which arise when using unstructured grids or 
regular Cartesian meshes in complex geometries. Although small cells can be easily 
eliminated in one dimension, at some cost in accuracy, doing so in two or three di- 
mensions is more complicated and results in greater loss of accuracy. Furthermore, 
higher-order discretizations require small cells near the boundary to avoid the Runge 
phenomenon. 

We have illustrated the advantages in the simplest one-dimensional model prob- 
lem, but the extension to higher dimensions is straightforward. Suppose, for example, 
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that we are solving the wave equation in a domain fi C Rd. If a point x is within a 
time step t of the domain boundary du, we define the function 

(6.1) ü(X,T) =2U(X,0)-U(X,-T)+ /        Gd(|x-y|,T)Au(y,0)dy 

where ST = {y : |y - x| < r}. Whereas in one dimension, the exact solution is given 
by (4.5), it is now of the form 

(6.2) u{x,t)=ü(x,t)+B{dSl,ü,g). 

The operator B(dü,ü,g) describes the exact solution to the Dirichlet problem with 
zero initial data and boundary condition g(x,t) - ü(x,t). This can be written out 
explicitly in terms of hyperbolic potential theory and can easily be generalized to 
Neumann or Robin boundary value problems. 

It is not surprising, perhaps, that robustness and stability come at a price. In 
our formulation, that price is the construction of appropriate quadratures for both 
the volume integral in (6.1) and the boundary operator B(dQ,ü,g) in (6.2). Higher 
dimensional examples, higher-order discretizations, and stability estimates will be 
reported at a later date. 
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1    Introduction 

Gaussian quadratures are a classical tool of numerical integration and possess several de- 
sirable features such as uniqueness of nodes, positivity of weights, and an optimal number 
of nodes: an TV'-point Gaussian rule is exact for all polynomials of orders up to 2A: - 1. 
and no iV-point rule is exact for all polynomials of order 2AT. Since many situations require 
high-order quadratures in dimensions greater than one, a number of attempts have been 
made to construct quadrature rules in two dimensions that resemble the Gaussian ones. Of 
particular interest are quadrature rules on triangles, which are a standard tool for describing 
surfaces, and in many other situations. 

One widely used approach is the naive tensor product rule, based on one dimensional 
quadratures. This approach is effective when the region of integration is a parallelogram. 
It is fairly straightforward to construct "tensor product" quadrature rules on triangles (see. 
for example, [12]) and on certain other polygons. However, the resulting quadrature rules 
are less efficient than those on rectangles. Furthermore, tensor product rules lack symmetry 
on triangles, a convenient feature for programming. 

Lyness and Jespersen performed an exhaustive study of quadrature rules on triangles, 
and developed two types of fairly efficient rules which they termed "holistic" and "cytolic".' 
They generated rules of orders up to twelve [6]. Berntsen and Espelid constructed quadra- 
ture rules of degree 13 for the triangle [1]. 

We present a scheme for the generation of reasonably high-order quadratures for poly- 
nomials on triangles in R2. The scheme is based on the simple observation that integrals 
over regularly shaped regions are invariant under certain transformations. It is essentially a 
formalization and generalization of the approach used in [6]. With this scheme, quadrature 
rules of orders up to 30 on triangles have been obtained. 

The structure of this paper is as follows. In Section 2 we introduce mathematical and 
numerical preliminaries. In Section 3 we develop the analytical apparatus used in the 
construction of the quadrature rules. We describe our scheme in Section 4, and illustrate it 
with the construction of quadratures on a standard triangle in Section 5. Finally Section 6 
contains discussions and conclusions. 

2    Mathematical and Numerical Preliminaries 

In this section, we collect the relevant mathematical and numerical tools to be used in 
Section 3. 

2.1    Representation Theory 

Following is a summary of several elementary facts about representations of finite groups; 
a more detailed discussion on this subject can be found, for example, in  [13]. 

Suppose that Q is a region in the rry-plane and G the symmetry group of Q. As is 
well-known from the theory of representations, the points of Q may be partitioned into 
G-orbits, each of which is an equivalence class on Q with respect to the relation defined by 
the group G. 



Similarly, the function spaces on Q may be partitioned into subspaces. each containing 
functions that transform according to a particular irreducible representation (IR) of G 
Furthermore, the inner product, defined as 

(/.-, fj) = jJ fi(x, y) ■ fj(x, y) dx dy, (1) 

vanishes if f{ and fj transform according to distinct IRs. 
Two immediate consequences follow from the preceding fact: 

• Since 

Jjf(x,y)dxdy = {l.J), (2) 

any function not belonging to the identity representation of G integrates to zero. 

• If the set {{xi,y{)}, i = 1,2,...,n, constitute a G-orbit in Q, then the function 

£'(*- xuy-yi) 

belongs to the identity representation; thus 

1£f(xi,yi) = 0 
j=i 

for any / belonging to any IR other than the identity. 

In other words, when constructing a quadrature rule that is invariant under G, we need only 
adjust the weights and abscissae to correctly integrate functions belonging to the identity 
representation; all functions belonging to nontrivial representations are integrated exactly. 

Conveniently, the operator that projects onto the function subspace transforming ac- 
cording to the identity representation is given by a sum over transformed functions: 

1   m 

to/)(*,v) = -£*«(/)(*•»). (3) 

where $„(/) denotes that transformation of f{x,y) according to 9l e G, and m, the order 
of G. 

We will denote the standard equilateral triangle in R2 by T (see Figure 2.1). In this 
case, the symmetry group is usually denoted by D3, and is of order 6. The points of T are 
naturally classified by D3-orbits. each orbit containing one, three, or six points. The first 
class consists of the center of the triangle; the second class consists of the union of three 
medians minus the center of the triangle; the third class consists of all points on T not 
belonging to the first and second classes. 



Figure 2.1. An Equilateral Triangle 

2.2    Simulated Annealing 

Simulated annealing is a numerical technique for solving combinatorial optimization prob- 
lems, originally developed by Kirkpatrick et al [4, 5]. The algorithm draws an analogy 
between the behavior of a physical system with many degrees of freedom in thermal equi- 
librium at a series of finite temperatures as encountered in statistical physics, and the prob- 
lem of finding the minimum of a given function of many parameters as in combinatorial 
optimization. It was based on a simple idea [3]: 

When optimizing a very large and complex system (i.e., a system with many 
degrees of freedom), instead of "always" going downhill, try to go downhill "most 
of the time." 

There are three main components in any application of simulated annealing method; 
they are: 

• Configure the optimization problem into a many-body physical system with states S. 

• Construct a scalar objective function E(S), which corresponds to the energy function 
of a physical system; the optimization problem then becomes finding the minimum 
energy configuration of the physical system. 

• Construct a system of random state modifications (or updates) that obey detailed 
balance [8]; the random state modifications must ensure that any allowable state of 
the system is reachable. 



• Develop the annealing (or cooling) schedule which governs the convergence of the algo- 
rithm. The annealing schedule includes the initial temperature setting, the decrement 
of the temperature, and the final value of the temperature; at any given temperature, 
the annealing process proceeds according to the Metropolis algorithm. 

The Metropolis algorithm, based on Monte Carlo techniques, developed in 1953. was 
originally designed to compute the properties of systems in thermal equilibrium. Following 
is a summary of the algorithm; details can be found, for example, in the original paper [8] 
by Metropolis et al. 

Initially, the system is in state S0 with an energy E[S0). In each step of the algorithm, 
a state Si of the system is altered to # according to the random update scheme, and a 
resulting change AE in the energy of the system is computed: 

AE = E(Si)-E(St). (4) 

If AE < 0, the update is accepted, and the system evolves to the new state Sf. if 
AE > 0, the update is accepted with a probability P{AE), where 

P(AE) = exp(-AE/T), (5) 

ant T is the absolute temperature. 

The choice of P{AE) ensures that at a temperature T approaching zero, only states 
with minimum energy have a nonzero probability of occurrence. When the temperature is 
lowered in a sufficiently slow manner, the system can achieve thermal equilibrium at each 
temperature, and therefore achieve a minimum energy state at the low final temperature. 

2.3    Newton's Method 

Newton's method is an iterative method for solving equation systems of the form 

fi{xi,x2.....,xn) 

F(x) = = 0. (6) 
fn(xi,X2,...,Xn)  . 

Definition 2.1  The Jacobian DF of function F in equation (6) is defined by: 

DF(x) 
Oil 

3/n 
. dxi 

dxn 

dfn 
dxn    . 

(7) 

Theorem 2.1  (Newton's Method) Let F : Rn —► Rn be continuously differentiable in the 
neighborhood of £ where 

F(0 = 0 (8) 

Suppose that Jacobian DF(x) is nonsingular at point x.   Given a starting point x0 G Rn, 
define sequence x\, x2,..., of Rn as the following: 

xM=xk-DF(xk)-lF(xk). (9) 



Then there exists e, e > 0 and for all x, \\x - x0\\ < e, there exists 5>0 such that 

\\xk+1 -x\| < S\\xk-x\|2 (10) 

In other words, sequence (9) converges to ( quadratically if the initial point x0 is sufficiently 
close to f. 

3    Analytical Apparatus 

In this section, we develop analytical tools used in Section 4 in the numerical construction 
of the quadrature rules. For simplicity, we assume that the integration region Q belongs to 
R2; generalization to higher dimensions should be straightforward. 

3.1    Notations 

Definition 3.1 A monomial of order n in R2 is any term of x and y of the form 

*nV2 (11) 

where m,n2 are integers, 0 < nun2 < n and m + n2 = n. We denote the set of all 
monomials of orders less than n by M(n). 

Definition 3.2 The order of a quadrature rule is the lowest order of monomials for which 
the rule is inexact. We denote it by Ö. 

Definition 3.3 The efficiency E of a quadrature rule is the ratio of the number of inde- 
pendent monomials (up to a certain order) for which the quadrature rule is exact, to the 
number of free parameters of the quadrature rule. 

Example Suppose that O is the order of a quadrature rule on an integration region Q, 
and TV is the number of quadrature nodes. Then the number of independent monomials 
in M{0) is given by -L^-, and the number of ostensibly free parameters for iV-point 

quadrature is 3N. Therefore, the efficiency E of the quadrature is °^)l2, For some 
regions of integration such as the surface of the sphere, the number of natural variables 
of the polynomials (x,y,z for the spherical shell) is greater than the dimensionality of 
the region of integration, therefore these relations may be different. In particular for the 
spherical shell, \M{0)\ = ^o±ii and E = 0(20+1) 

Definition 3.4 A quadrature on integration region Q is said to be group invariant if it is 
invariant under the transformation of every group element g in Q's symmetry group G. 

3.2    Reduction of Dimensionality 

Given an integration region Q, we seek quadrature rules of order O with minimum number 
of nodes TV that possess the following properties: 

1. The quadrature rule is group invariant; 



2. All weights are positive:  quadrature rules with negative weights are unstable with 
noisy integrands; 

3. All quadrature nodes are within the integration region Q (including the boundary). 

We evaluate the resulting quadratures according to the efficiency E defined in the preceding 
section. ° 

Based on the results of Section 2.1, quadrature rules of the form 
•l       771 

E^-•-£*«(/)(*.-, 2/.-) 
i=i 

automatically integrate correctly all functions not belonging to the identity representation. 
Thus if we adjust {Wi} and {(xj,y,-)} so that the quadrature integrates correctly all polyno- 
mials belonging to the identity representation up to a certain degree, the rule will be correct 
for all polynomials up to that degree. This reduces considerably the number of nonlinear 
equations one must solve to obtain a quadrature rule. 

4    Construction of Quadratures 

We now construct group invariant quadrature rules with the mathematical and numerical 
apparatus developed in Sections 2 and 3. 
Remark Given an integration region Q, the symmetry group G is either finite or infinite. 
If G is finite, we seek quadrature rules that are invariant to the entire group; otherwise, 
we select some maximal subgroup for which a group invariant quadrature rule exists, and 
construct quadratures accordingly. In some cases, the size of the symmetry group may grow 
with the number of nodes in the quadrature; an excellent example of this is the circle, where 
the order of the maximal subgroup equals the number of nodes N. 

Due to Section 2.1, group invariant quadrature nodes may be partitioned into G-orbits 
where G is the symmetry group. We parameterize the i-th G-orbit by x({Ai}), where 
{A;} = An,.... Aiu, and u is determined by the degrees of freedom of the orbit (eg., 0 < u < 2 
if the integration region Q is in R2). We denote the number of points contained'in the i-th 
orbit by m,, and the corresponding weight, IUJ. 

We compute the quadrature nodes x({\i}) and weights w{ by solving the following 
non-linear system: 

A 

Ew«-mi/i[^({M)]-^i  = o, 
t=l 
A 

£wimi/2[x({Aj})]-J2    =   0, 
i=\ (12) 

E^mi/nb ({Ai})] - In    =   0. 
i=i 

where A is the number of distinct orbits occupied by the quadrature nodes. 

Ij = fj fjdQ,   i = 1,2,...,A (13) 



and /i, /2...., fn are the set of polynomials to be evaluated. 
Due to Section 2.1, a group invariant quadrature will automatically be correct for any 

polynomial that is orthogonal to the subspace of group invariant polynomials. Therefore we 
only need to evaluate polynomials that transform according to the identity representation 
of G\ an appropriate choice of the set of polynomials to be evaluated would be a group 
invariant orthogonal basis (up to a certain order) on region Q, which may be obtained via 
equation (3). 

We use Newton's method to solve the non-linear system (12), with the iterative sequence 
defined by equation (9): this process converges quadratically due to Theorem 2.1. Following 
are the formulae of partial derivatives of individual functions with respect to weights and 
parameters (of nodes), which are needed in the Newton's method: 

dfi 
Q^: = mifj(x({Xi})), \i = l,2,...,A, (14) 

dfj dfi{x{{Xi})) 
di = Wi'        8Xik » = 1,2,....4 * = !,...,*, (15) 

where m is the number of parameters of the z'-th orbit; in the case of T, m = 0, 1. or 2, 
respectively for orbits containing 1, 3, or 6 points. 

As is well-known, Newton's method is extremely sensitive to the choice of the initial 
approximation x0 (see Section 2.3). In practice, the non-linear system (12) is often under- 
constrained: the number of equations that can be solved with weights that are positive 
and nodes that are in the region of integration is smaller than the number of unknowns 
A + Ei ßi- Simulated annealing provides a tool under such circumstances for finding the 
initial approximation x0\ we defined the objective function J via the formula: 

Ij-J2Wimifj(X({Xi)}) (16) 

Our implementation of the method follows closely the standard procedure set forth 
in [4], with a randomly selected starting configuration S0, and randomly chosen small dis- 
placements of nodes and weights at each step. The decrement of annealing temperature is 
defined by 

Tk = m^ (17) 

where a is a constant smaller than but close to 1. Sometimes the cooling process fails, and 
we need to adjust the temperature manually. Throughout the process, any weight that is 
negative after the random displacement is set to zero. 

5    Quadratures on the Triangle 

We have implemented the numerical scheme described in Section 4 on the triangle T (see 
Figure 2.1) and obtained rules of orders up to 30. Any other triangle may be mapped onto 
T via an affine transformation. 



5.1    Parameterization of Quadrature Nodes 

We parameterize a point on the triangle with three dependent variables Ul,u2. and u3, with 
the constraint 

ui+u2 + u3 = l. (18) 

The variables uuu2,u3 are related to the Cartesian variables x:y via the following 
formulae: ° 

x   = 
2ui -U2-UZ 

V 2 
l + 2x 

U
I    =    —7.— 

u2 
_     1-X + y/3y 

l-X- y/Zy 

5.2    Group Invariant Orthogonal Polynomials 

(19) 

(20) 

(21) 

(22) 

(23) 

Order 

0 

2 

3 

4 

4 

Function 

yf^+v-i) 
(I) ~2 (4 - 30x2 + 35x3 - 30y2 - 105xy2) 

% [l - 12 (x2 + y2) + 36 {x2 + y2)2 + 16x (-x2 + 3y2) 

4 
9v/3 

~\/5 
9N/I1863 

~y/1144 
243\/ll863 

W5 
243 

7^ [26x - 49 (x2 - y2) - 112x (x2 + y2) + 168 {x2 - y2) {x2 + y2)} 
r 8-140 (x2 + y2)+420(x2 + y2)2 + 70x (x2-3y2) 

-385x(x2 + y2) (x2-3y2) 
9 - 2960 x (x2 - 3y2) + 10560 x (x2 - 3y2) (x2 + y2) 

-216 (x2 + y2) + 3300 (x2 + y2)2 - 11440 (x2 + y2)3 

140 + 18443 x6 - 158205 x4 y2 + 197685 x2 y4 - 5283 y6 

+6680 x (x2 - 3y2) - 33450 x (x2 - 3y2) (x2 + y2) 
-3360 (x2 + y2) + 11790 (x2 + y2)2 

40 - 1260 (x2 + y2) + 9240 (x2 + y2)2 

+ 15015x (x2-3y2) (x2 + y2)2 - 770x (x2-3y2) 
-2002 (llx6 + 15x4y2 + 45x2y4 + 9 y6) 

Table 1: Group Invariant Orthonormal Polynomials on the Triangle 

One set of orthogonal polynomials on T is given by the direct product of Jacobi poly- 
nomials and Legendre polynomials: 
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where 
o i — X 

Rnm(z)=P^1'°(z). 

(24) 

(25) 

Using the projection operator specified in Section 2.1, we obtain the group invariant 
orthogonal basis on T; the normalized basis polynomials of orders less than 8 are shown in 
Table 1. 

5.3    Numerical Results 
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Figure 5.3. Triangle T and the quadrature nodes for Ö = 30. 

In agreement with the criteria specified in Section 3.2, all quadratures we obtained 
have nodes and weights that are invariant under the action of D3. In Table 2, we list 
the quadrature rules of orders 0 = 5,10,20, and 30; the quadrature nodes are partitioned 
into three types of orbits as described in Section 2.1, and each orbit is listed as a set of 



parameters {AJ. i = 0,1.2: all weights are normalized so that the integral of any basis 
polynomial on T is one. 

Ö 

10 

20 

30 

Weights (wi) 

2.250000000000000£ - 01 
1.323941527885062E - 01 
1.259391805448271E-01 
8.352339980519637£-02 
7.229850592056742£ - 03 
7.44921779209805LE-02 
7.864647340310853E - 02 
6.928323087107503£ - 03 
6.928323087107503£ - 03 
2.951832033477940£-02 
2.951832033477940E - 02 
3.957936719606124£ - 02 
2.761042699769952^-02 
1.77902954732674QE-03 
2.011239811396117£-02 
2.681784725933157£-02 
2.452313380150201E-02 
1.639457841069538£-02 
1.47959073986496QE-02 
4.57928227770425LE - 03 
1.651826515576217E-03 
1.651826515576217E - 03 
2.349170908575584£ - 03 
2.349170908575584E-03 
4.465925754181793£ - 03 
4.465925754181793.E-03 
6.09956680790797LE - 03 
6.099566807907971E - 03 
6.891081327188203£-03 
6.891081327188203£-03 
7.99747507247816LE - 03 
7.99747507247816LE-03 
7.386134285336023E-03 
7.386134285336023£ - 03 
1.279933187864826E - 02 
1.279933187864826E-02 
1.725807117569655E-02 
1.725807117569655E-02 
1.867294590293547E-02 
1.867294590293547£-02 
2.281822405839526.E-02 
1.55799602028992QE - 02 
3.177233700534134E-03 
1.048342663573077E-02 
1.320945957774363E-02 
1.497500696627150£-02 

Nodes 
A: 

5.971587178976982E-02 
7.974269853530873£-01 

4.269134091050350£-03 
1.439751005418876E-01 
6.304871745135509E-01 
9.590375628566449£-01 
3.50029898972720LE-02 
3.50029898972720LE - 02 
3.754907025844263£-02 
3.754907025844263^-02 

1.365735762560334£ - 01 

3.327436005886387£-01 

1.500649324429017E-03 
9.413975193895086^-02 
2.044721240895264E-01 
4.709995949344253£-01 
5.779620718158465£-01 
7.845287856574573E - 01 
9.218618243243946£-01 
9.776512405413408E-01 
5.349618187337239E-03 
5.349618187337239£-03 
7.954817066198923£-03 
7.954817066198923E-03 
1.042239828126384E-02 
1.042239828126384E-02 
1.096441479612335E-02 
1.096441479612335£ - 02 
3.856671208546238E - 02 
3.856671208546238E - 02 
3.558050781721823^-02 
3.558050781721823£-02 
4.967081636276412E-02 
4.967081636276412E-02 
5.85197250843317LE-02 
5.85197250843317LE-02 
1.214977870043943E-01 
1.214977870043943E-01 
1.407108449439387E-01 
1.407108449439387E - 01 

6.354966590835223£ - 02 

1.571069189407069E-01 

3.956421143643740E-01 

2.731675707129105£-01 

1.017853824850170E-01 

4.466585491764138^-01 

1.99010794149503LB-01 

3.242611836922827E-01 

2.085313632101329£-01 

3.231705665362575E-01 

7.330116432765550E-03 
8.299567580296455E - 02 
1.509809561254103E-01 
2.359058598921665£-01 
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o Weights (wi) 

1.4987904443384195-02 
1.3338864741021665-02 
1.0889171113902015-02 
8.1894406608934615-03 
5.5753875886077855 - 03 
3.1912164734119765-03 
1.2967151443270455-03 
2.9826282613491725 - 04 
2.9826282613491725-04 
9.989056850788964E - 04 
9.9890568507889645 - 04 
4.6285084917325335 - 04 
4.628508491732533E - 04 
1.2344513363824135 - 03 
1.2344513363824135-03 
5.7071985224320625 - 04 
5.7071985224320625-04 
1.126946125877624E-03 
1.1269461258776245-03 
1.7478669494073375-03 
1.7478669494073375 - 03 
1.1828188150316565-03 
1.1828188150316565-03 
1.9908392946750345 - 03 
1.9908392946750345 - 03 
1.9004127950359805 - 03 
1.9004127950359805 - 03 
4.4983658088174515 - 03 
4.4983658088174515-03 
3.4787194602747195 - 03 
3.4787194602747195 - 03 
4.1023990367239535 - 03 
4.1023990367239535-03 
4.0217615497441625-03 
4.0217615497441625-03 
6.0331646607950665 - 03 
6.0331646607950665 - 03 
3.9462903021295985 - 03 
3.9462903021295985-03 
6.6440445376802685-03 
6.6440445376802685 - 03 
8.2543058560784585 - 03 
8.2543058560784585-03 
6.49605663340641 IE - 03 
6.4960566334064115-03 
9.2527781441466025 - 03 
9.2527781441466025 - 03 
9.1649207262942785-03 
9.1649207262942785-03 

Nodes 
Ai Ao 

4.3802430840784815 
5.4530204829193125 
6.5088177698254035 
7.5348314559712685- 
8.3983154221560635- 
9.0445106518420245- 
9.5655897063971705- 
9.9047064476912615- 
9.2537119334648665- 
9.2537119334648665- 
1.3859258555639785- 
1.3859258555639785- 
3.6824154559107555- 
3.6824154559107555- 
3.9032234241593665- 
3.9032234241593665- 
3.2332481550105385- 
3.2332481550105385- 
6.4674321122364755- 
6.4674321122364755- 
3.2474754913326235- 
3.2474754913326235- 
8.6750908067537635- 
8.6750908067537635- 
1.5597026467313875- 
1.5597026467313875- 
1.7976721253685215- 
1.7976721253685215- 
1.7124245353889315- 
1.7124245353889315- 
2.2883405346581875- 
2.2883405346581875- 
3.2737597287766655- 
3.2737597287766655- 
3.3821012342340975- 
3.3821012342340975- 
3.5547614460015255- 
3.5547614460015255- 
5.0539790306866555- 
5.0539790306866555- 
5.7014714915732225- 
5.7014714915732225- 
6.4152806421203405- 
6.4152806421203405- 
8.0501148287625645- 
8.0501148287625645- 
1.0436706813453055- 
1.0436706813453055- 
1.1384489442875135- 

-01 
-01 
-01 
-01 
-01 
-01 
-01 
-01 
-04    4.1529527091331175-01 
-04 
-03    6.1189909785349045-02 
-03 
-03    1.6490869013690665-01 
-03 
-03    2.5035062232002515-02 
-03 
-03    3.0606446515109585-01 
-03 
-03    1.0707328373021815-01 
-03 
-03    2.2995754934558435-01 
-03 
-03    3.3703663330578305-01 
-03 
-02    5.6256576182060735-02 
-02 
-02    4.0245137521240105-01 
-02 
-02    2.4365470201082855-01 
-02 
-02    1.6538958561453275-01 
-02 
-02    9.9301874495846905-02 
-02 
-02    3.0847833306905505-01 
-02 
-02    4.6066831859211305-01 
-02 

02    2.1881529945392975-01 
02 
02    3.7920955156027415-01 
02 
02    1.4296081941818545-01 
02 
02    2.8373128210592505-01 
02 
01    1.9673744100444085-01 
01 
01    3.5588914121166215-01 
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o Weights (wi) 

1.156952462809767^-02 
1.156952462809767E - 02 
1.176111646760917E - 02 
1.176111646760917JS-02 
1.382470218216540E-02 

Nodes 
Ai A-, 

1.138448944287513E-01 
1.453634877155238E-01 
1.453634877155238E- 01 
1.899456528219788E-01 
1.899456528219788E-01 

2.598186853519115.E7 - 01 

3.219231812312984E-01 

Table 2:    Quadratures on Triangle of Orders O = 5,10,20 and 30. 

Conversion from the parameters {A,} to {uuu2.u3} is defined by the following rules: 

• No A parameter : u\ = u2 = u3 = \; 

1-Ai • One parameter Ai : m = Xuu2 = u3 = ^y 

• Two parameters Ai, A2: ux = Ai,u2 = A2,u3 = 1 - Ax - A2. 

The Cartesian coordinates x,y of each quadrature node in the orbit specified by {A,-} may 
be obtained from any permutation of {uuu2,u3} using formulae (18) and (19). 

5.4    Accuracy 

Order (O) Nodes (N) Error Order (O) Nodes (N) Error 
1 1 0 16 54 7.285839£-16 
2 1 0 17 58 8.721051E-16 
3 3 1.665335^-16 18 66 5.308254E-16 
4 6 2.081668^-16 19 73 8.665267^-16 
5 7 2.081668£-16 20 82 1.081492£-15 
6 12 2.775558£-16 21 85 7.406211E-16 
7 12 2.914335£-16 22 93 7.406211£-16 
8 15 6.245005£"-16 23 100 1.256012^-15 
9 16 2.081668E-16 24 106 1.013946^-15 
10 19 4.293441 E-16 25 118 1.242504E-15 
11 25 4.293441E-16 26 126 7.236788£-16 
12 28 4.293441E-16 27 138 1.070311E-15 
13 36 6.314393£-16 28 145 1.362410.E-15 
14 40 5.464379E-16 29 154 1.057250^-15 
15 46 6.677055.E-16 30   184 1.087304E-15 

Table 3: Errors of Quadrature Rules for Triangles 

We test each quadrature of order Ö on all monomials in set M(O); the maximum 
absolute error for each quadrature is listed in Table 3. These results were obtained with 
calculations of double precision accuracy. 
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5.5    Efficiency 

Order (O) 
Efficiency E{%) 

Triangle   Tensor Product 

2 100.0              100.0 
3 66.7 50.0 
4 55.6 83.3 
5 71.4 55.6 
6 58.3 77.8 
7 77.8 58.3 
8 80.0 75.0 
9 93.8 60.0 

10 96.5 73.3 
11 88.0 61.1 
12 92.9 72.1 
13 84.0 61.9 
14 87.5 71.4 
15 87.0 62.5 
16 84.0 70.8 
17 87.9 63.0 
18 86.4 70.3 
19 86.8 63.3 
20 85.4 70.0 
21 90.6 63.6 
22 85.4 69.7 
23 92.0 63.9 
24 94.3 69.4 
25 91.8 64.1 
26 92.9 69.2 
27 91.3 64.3 
28 93.3 69.0 
29 94.2 64.4 
30 84.2 68.9 

Table 4: Efficiency of Triangle Rules and Tensor Product Rules 

In Table 4, we list the efficiency of each quadrature rule of orders 2 through 30, and that 
of the corresponding tensor product rules. An analysis of this table reveals that our triangle 
quadratures tend to be more efficient for higher orders. The efficiency is comparable to the 
results obtained by Lyness and Jespersen on their rules, whose highest order is twelve; 
however, their rules tend to be more efficient than ours. The efficiency of our quadratures 
are better than that of tensor product rules. For a tensor product quadrature rule to be 
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of order O, (j§])   quadrature nodes are needed, yielding an efficiency E = °(°+J)/2 

3'l£l2 

which asymptotically approaches 4. 

6 Conclusions 

We have presented a numerical scheme combining simple group theory and brute-force 
optimization to reduce the dimensionality of the nonlinear system used to derive quadrature 
rules. With this scheme, we obtain quadratures with orders up to 30. 

This scheme is readily extensible to other symmetric regions in R2. and to higher di- 
mensions; one simply has to replace £>3 with the corresponding symmetry groups. 

The principal drawback of this scheme is that a significant amount of human intervention 
is involved in choosing initial points and adjusting the simulated annealing constants A 
more systematic procedure would be much desirable. Also, by requiring quadrature rules 
symmetric to the largest subset of the symmetry group of the integration region, some 
highly efficient quadratures may be missed by our method. Such cases are observed during 
our experiments on the triangle; an example is that our scheme will fail to find a 5-point 
rule that has an order of 4. 
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1    Introduction 

Integral equations of classical potential theory are a tool for the solution of the Laplace equa- 
tion; they have straightforward analogues for many other elliptic partial differential equations 
(PDEs). Prom the point of view of a modern mathematician, they are relatively simple objects. 
Indeed, a second kind integral equation (SKIE) is a sum of the unity operator and a compact 
operator; for most practical purposes, such an object behaves like a finite-dimensional system of 
linear algebraic equations, with the Fredholm alternative replacing the theory of determinants. 
Integral equations of the first kind (FKIEs) are a considerably more complicated object than 
those of the second kind. Since a first kind integral operator is compact, solving a first kind in- 
tegral equation involves the application of the inverse of a compact operator to the right-hand 
side; depending on the right-hand side, the result might or might not be a function. Since 
the classical boundary value problems (Dirichlet, Neumann, and Robin) are easily reduced to 
SKIEs, the original creators of the potential theory simply ignored the FKIEs. Later, FKIEs 
of classical potential theory have also been investigated, and are now a fairly well-understood 
object. 

In a nutshell, when the solution of a Dirichlet problem is represented by the potential of a 
single layer, the result is an FKIE; when the solution of a Dirichlet problem is represented by 
the potential of a double layer, the result is an SKIE. When the solution of a Neumann problem 
is represented by a single layer potential, the result is an SKIE; and when the solution of a 
Neumann problem is represented by a double layer potential, the result is not a classical inte- 
gral equation, but rather an integro-pseudodifferential one (in computational electromagnetics, 
this particular object is known as a hypersingular equation). Once the integral equation is 
constructed, the question arises whether it has a solution, whether that solution is unique, etc. 
Generally, questions of this type are easily answered for the Laplace and Yukawa equations, 
and less so in other cases. 

As a computational tool, SKIEs were popular before the advent of computers; between 
1950 and 1970, they were almost completely replaced with Finite Differences and Finite Ele- 
ments. The only areas where integral equations survived as a numerical tool were those where 
discretizing the whole area of definition of a PDE is impractical or very difficult, such as the 
radar scattering and certain areas of aerodynamics. The reasons for this lack of favor have to 
do with the fact that discretization of most integral equations of potential theory leads to dense 
systems of linear algebraic equations, while the Finite Elements and Finite Differences result in 
sparse matrices (hence the name "Finite Elements"). During the last 15 years or so, it has been 
discovered that many integral operators of potential theory can be applied to arbitrary vectors 
in a "fast" manner (for a cost proportional to n for the Laplace and Yukawa equations, and for 
a cost proportional to n • log(n) for the Helmholtz equation, with n the number of nodes in the 
discretization of the integral operator). Detailed discussion of such numerical issues is outside 
the scope of this paper, and we refer the reader to [5, 6]. Here, we remark that the interest 
m integral formulations of problems of mathematical physics has been increasing, and that 
classical tools of potential theory turned out to be insufficient for dealing with many problems 
encountered in practice. 



Specifically, many applications lead to integral formulations involving not only integral 
equations, but also integro-pseudodifferential ones. More frequently, while it is possible to for- 
mulate a problem as an FKIE or an SKIE, the numerical behavior (stability) of the resulting 
schemes leaves much to be desired. In such cases, it is sometimes possible to reformulate the 
problem as an mtegro-pseudodifferential equation with drastically improved stability proper- 
ties (perhaps, after an appropriate preconditioning). A simple example of such a situation is 
the exterior Neumann problem for the Helmholtz equation, where the classical SKIE has so- 
called spurious resonances, coinciding with those for the interior Dirichlet problem on the same 
surface, and having nothing to do with the behavior of the exterior Neumann problem being 
solved. The so-called "combined field equation" solves the problem of spurious resonances at 
the expense of replacing an integral equation with an integro-pseudodifferential one (see. for 
example, [1, 12, 14, 17, 20]). Other examples of such situations include problems in scattering 
theory, in computational elasticity, in fluid dynamics, and in other fields. 

In this paper, we investigate in detail the analytical structure of the integro-pseudodiffer- 
ential equations obtained when Neumann problems are solved via double layer potentials when 
Dirichlet problems are solved via quadruple layer potentials, when Neumann problems are 
solved via quadruple layer potentials, and in several other cases (see (11) - (29) in Section 2 
for a detailed list). It turns out that the analytical structure of the obtained equations is 
quite simple, and involves several standard pseudodifferential operators (derivative Hilbert 
transform, derivative of Hilbert transform, inverse of the derivative of the Hilbert transform and 
the second derivative), composed (from the left or the right) with simple diagonal operators' We 
also show that the product of the standard hypersingular integral operator with the standard 
first kind integral operator of classical potential theory is a second kind integral operator- in 
other words, these two operators are perfect preconditioned for each other, asymptotically 

Thus, the purpose of this paper is detailed analytical investigation of integro-pseudodiffer- 
ential operators converting the densities of charge, dipole, quadrupole, and octapole distribu- 
tions on a smooth curve in R2 into the potential, normal derivative of the potential, second 
normal derivative of the potential, and third normal derivative of the potential on that curve 
It turns out that each of these operators is a sum of a standard operator (obtained by replacing 
the curve with a circle), an integral operator with a smooth kernel, and a diagonal operator 
Once such expressions are obtained, it is quite easy to construct discretizations of the underly- 
ing integro-pseudodifferential operators that are adaptive, stable and of arbitrarily high order 
Such discretizations (and resulting PDE solvers) have been constructed and will be reported 
in a sequel [10] to this paper. 

Remark 1.1 While the results reported here are easily generalized to three dimensions, it 
should be pointed out that there exist important classes of problems in three dimensions lead- 
ing to integro-differential equations that are outside the scope of this paper. Specifically, when 
frequency-domain equations of electromagnetic scattering are reduced to integral equations on 
the boundary of the scatterer (yielding the so-called Stratton-Chew equations), the resulting 
integro-pseudodifferential operators are of a type not investigated here fin addition to normal 
derivatives on the boundary, they involve tangential derivatives); similarly, integral equations 



of elastic (as opposed to acoustic) scattering lead to integral expressions whose analysis is not 
a straightforward extension of that presented in this paper. Needless to say, such operators are 
frequently encountered in applications; they are currently under investigation. 

The structure of this paper is as follows. In Section 2, we list the identities that are the 
purpose of this paper; the remainder of the paper is devoted to proving these identities. In 
Section 3 the necessary mathematical preliminaries are introduced. In Section 4 we present 
proofs of some of the results formulated in Section 2; when the proofs of several results are 
almost identical, we only prove one of them. Finally, in Section 5 we briefly discuss extensions 
of results of this paper to three dimensions, and to boundary conditions other than Dirichlet, 
Neumann, and Robin. 

Remark 1.2 The principal purpose of this paper is to present the explicit formulae (50) - 
(68), (89) - (93), (94) - (99), (100) - (107), to be used in the design of numerical tools for the 
solution of partial differential equations. The proofs of these formulae in Section 4 below are a 
fairly standard exercise in classical analysis, provided here for the sake of completeness. The 
authors expect that many readers will find it unnecessary to read this paper beyond Section 2. 

2    Statement of Results 

2.1    Notation 

We will be considering Dirichlet and Neumann problems for Laplace's equation in the interior 
or the exterior of an open region ft bounded by a Jordan curve f{t) = (Xl (t),x2(t)) in B2 where 
t € [0, L). We will assume that 7 is sufficiently smooth, and parametrized by its arclength. The 
image of 7 will be denoted by T, so that du = T. For a vector y = (yi, y2) E JR? we will denote 
its Euclidean norm by ||y||. Further, c(t) will denote the curvature, and JV7(<) or simply N(t), 
the exterior unit normal to T at j(t). Clearly, 

N(t) = (x2(t),-x[(t))- (1) 

the situation is illustrated in Fig. 1. 

A charge of unit intensity located at the point x0 E R2 generates a potential, 9Xo : R \ 
{20} -» 1R, given by the expression 

**o(*) = -log(||a;-soll), (2) 

for all x 56 x0. Further, the potential of a unit strength dipole located at i0€E2, and oriented 
in the direction h E JR.2, \\h\\ = 1, is described by the formula 

U*) = f^. (3) Ik-*oll2 K ' 
As is well known, the potential due to a point charge at x0 E JR.2, defined by formula (2), is 
harmonic in any region excluding the source point x0. 



Figure 1: Boundary value problem in R2. 

Definition 2.1 Suppose that a : [0,1] -+ R is an integrable function.   Then we will refer to 
the functions p^ : R2 -> R and P^p^p^ : R2 \ T -> R, «^en 6y tte /.rmu/ae 

4(J)    =   I   %{t){x)<j(t)dt, (4) 

as iAe «tn^/e, douö/e, quadruple and octuple layer potentials, respectively. 

Remark 2.1  77>e functions §f, **^, ^ : R2 ^ {TW} ^ R ^ ^ ^^ fo ^ 

ifte <fy>o/e-, quadrupole- and octapole potentials, respectively. Obviously, 

d%(t)(x) (N(t),x-7(t)) 
dN(t)                \\x-7(t)f    ' (8) 

d2$i(t)(x) =    2(N(t),x-7(t))2 _L^ 

dN(t)2                   l|x-7(i)||4 ||z-7(i)||2' W 
d3$7ffl(*) =    8(JV(0,x-7(t))3 6(JVffl,s-^)) 

ÖJV(t)3                   ||x-7(t)||6 ||*-7(*)||*      • (10) 

Clearly, the potentials p\a, p\a, p\a are analytic in the interior of ß for any integrable 
a. However, for sufficiently smooth a and 7, they can be extended to ß as smooth functions 
Similarly, the potentials p^, p^, p^ are analytic functions in the exterior R2 \ ß of ß 
and can be extended as smooth functions to R2 \ ß.   Furthermore, the normal derivatives 
of these potentials also can be extended up to the boundary as smooth functions.  Needless 



to say. the interior and exterior extensions do not necessarily agree on the boundary T (with 
the obvious exception of p7iCr(z)), and we introduce the functions p°'°CT, p1?0 .. p1'0 e, p2>0 . 

A-' *.i' *•' Ä,i. *,e, P^i. *,., jfc.i- ^,e, P^i, P!i,., p£i, ^.e, 4d" 
P-r.ff.e : [0) L) -*• E. via the formulae 

??'>)  =   / s7(t)(700M<)Ä, (ii) 

io   M ..     fLd$jit)(y(s) + h-N{s)) 

P
2'°   W    -    Tin.   ^d2*7(t)(7(*)-fr-iV(*)) P7I,,,(*)   -   iimyo  _- ff(t)Äi (14) 

v2>°    (s)    -    lim  /•L^7W(7(^) + ^iV(5)) P7>a»    -    hmyo    _- a(t)dt, (15) 

3.0 , , ..      fLd3$y{t)(j(s)-h-N{s)) P-»«M = fcU aVW» «*>*» (16) 
P7f„,.W    -    hmyo    ^^p a(t)dt, (17) 

o,i   / x v      /■Id$7(4)(7(5)-/i-iV(5))    /x 
p™«w = te/o a^(3)—— "(*>*• (18) 
oi    M ..      /•Lö$7(4)(7(5) + /i-Ms)) 

1.1 /   N v /'L^2*7(t)(7(5)-^-iV(s)) 

ii    / x v      rLd2$7(t){l{s) + h-N(s)) 

*"*'W   =   fiS/o dNMNW °{t)*> (22) 

p7ie(s)    =    lim/^
3^)(7(^)^-^)) 

*™eV ; ^0yo dN{s)dN{i)2        *wat. (<"; 

0,2   , * r      fLd2%(t){l(s)-h-N(s)) 

P7>,e(S)   =    hmoyo 
7(%V(g)2       U)a(t)dt, (25) 



'W ' i^o7o dN(sfdN(t) W"' (26) 

7'"'"1 »-.oA dN(s)2dN(t) "W". (27) 

^,(.)  =  lim/^%.)(7M-/.-^)) 
7,<7'1 A->o./o <9iV(s)3 ^W«, (28) 

&M  =  iim/ta'*,w(T(') + *-JVW)
gmdt ran 7,1 A-+0/0 5iV(s)3 GW«- (29) 

Remark 2.2  Throughout the paper, the subscripts "i" and "e" ™7/ denote the limits from 
the interior and the exterior towards the boundary, respectively. Furthermore, the superscripts 
hj    (as, for example, m p^Js)) refers to i times and j times differentiation with respect 

to N{t) and N(s), respectively. 

Definition 2.2 Suppose that the function a : [0,L] -> R is twice continuously difference, 
and that 7 is sufficiently smooth.   Then we define the operators K°   K1'0   Kl<°   K2>°   K2$ 

^/"'/y' Kr K^'**■•■K" *- <■- K%-K" *% $?• $=&f" c[0, L] via the formulae 7'       7' J 

*?(*)(«)    =   P°y
fiA^ = lo

L^(t)(7(s))a(t)dt, (30) 

*'" - ^■■M-üar^'y^""-«*.      (33, 
**5MM = Ä>)-föf^!^M^*,        (M) 

*«" - ^^--^r%w%;-Nis))^.   <»> 
*Sww - ^..Wfarfl,^(7W(y-^))g(^i       (36) 

*»« - ^i-ftr«^«,,,,,   (37) 
*?»M - ^■.M-faJrt^»(^-jy"»g(.)a,     (38) 
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*S e(°")(5)     =    K'o-efs) = lim   /      7WW     ; \Jla(t)dt (40) 7' 7,',el ;     A->O./O dN{s)dN(t) ffwai' (4Uj 

1^2,1/   WN 21     ,  x       ,.        fL d3$-y(t)(-y(s)-h-N(s)) 

OOM - ^,lW.tef 2^^w)a(()Ä,        (43) 
K-0,2/  wx    _     n,2    /N      r      fLd2%(t)(l(s) + h-N(s))    /N 

Remark 2.3 Ofc»0,«Jy, iAe c^ors Ä#, Aft, J$, JEW  Ä$, flM  i^;2, ^ ^ 6y 

the formulae (37), (38), (43) - (48) are the adjoints of the operators Ä"1'?, if W, K2^, K2>% 
K*?i> Kife> K%, K%% defined by (31) - (36), (41), (42), respectively. Furthermore, ÜT°  if1'1 

KQ defined by (30), (39), (40) are self-adjoint. 7'" 

2.2    Physical Interpretation 

Formulae (30) - (48) have simple physical interpretations. Specifically, K° is the linear operator 
converting a charge distribution on the curve T into the potential of that charge distribution 
on r. The operator K^ converts a dipole distribution on V into the potential created by that 
distribution on the inside of T; the operator K^ converts a dipole distribution on T into the 
potential created by that distribution on the outside of T. The operator K°>\ converts a charge 
distribution on T into the normal derivative of the potential created by that distribution on 
the outside of T, etc. 

Generally, the first superscript denotes the number of differentiations at the source (charges, 
dipoles, quadrupoles, or octapoles); the second superscript denotes the number of differentia- 
tions at the point where the potential is evaluated (potential, normal derivative of the potential 
second normal derivative of the potential, third normal derivative of the potential). In agree- 
ment with standard practice in the theory of pseudodifferential operators, we will define the 



order k of either of the operators K1^ and K^e by the formula 

k = i + j-l, (49) 

and observe that in this paper, we describe in detail all operators of potential theory whose 
order does not exceed 2. For example, we do investigate the operator K^2, converting a dipole 

distribution on T into its second normal derivative, but we do not investigate the operator K2'2 

converting a quadrupole distribution on T into its second normal derivative. 7'' 
An examination of formulae (50) - (68) shows that the complexity of the expressions de- 

scribing the operators (30) - (48) on the circle hardly increases as the order of the operator 
grows. On the other hand, the differences between the operators (30) - (48) on the circle 
and those on an arbitrary curve become more complicated with the growth of the order of 
the operator. For example, the operators K°, i^;°, K*% K)% K°>\ on an arbitrary smooth 
curve always differ from these operators on the circle by a compact operator (see formulae (89) 
- (93)). Similar differences for the operators K2% K2% K1^ K#, <'?, K°>2

e involve the 

curvature of 7 (see (94) - (99)). For the operators Kz'], K3<°e, K
2'), K2\, K1'2, Ä"1»2, K0'3, 

ÜT°;|, the corresponding formulae (100) - (107) already involve the square and'the derivative 
of the curvature, as well as the Hilbert transform of the function. 

Remark 2.4 While it is certainly possible to derive explicit expressions for boundary integral 
operators of orders higher than 2, the complexity of the resulting formulae grows, while their 
numerical utility decreases. The authors have chosen to draw the line at the order 2, mostly 
because in the applications they anticipate, order 1 is sufficient. 

Remark 2.5 While many of the facts presented in this paper can be obtained "automatically" 
from the standard theory of pseudodifferential operators, the purpose of this paper is to provide 
the explicit expressions (50) - (68) to be used in numerical calculations. Thus, we are ignoring 
the connections between the formulae (50) - (68), (89) - (93), (94) - (99), (100) - (107), and 
the more general theory of pseudodifferential operators. 

2.3    Results 

The limits (12), (13), (18), (19) have been studied in detail in the literature (see, for example, 
[13, 11]). In Section 4, we conduct a similar investigation of (14) - (17), (20) - (29); first for a 
circle, and then for a sufficiently smooth Jordan curve. The following theorem provides explicit 
expressions for the operators .(30) - (48) on the circle. 

Theorem 2.6 Suppose that 7 is a circle of radius r parametrized by its arclength with the 
exterior unit normal denoted by N, k is an arbitrary integer, and s e [—7rr,7rr].  Then, 

(a) K°(eikt/r)(s)   =   P^eikt/T{s)=r ^{t){l{s))e^dt 

f 7r|*|-1re,'fc*/r,   for M0, 
\ -27rrlog(r),     forA; = 0, (50) 
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(b) Kl^eM")(s) =   j*,„„.(») = lim r^(.)(7M-A.iVM) 

(51) 

7?-       '" n-*uj-.Kr 

f -7rei/cs/r,   for Jfc^O, 
} -2?r, for& = 0, 

^°e(e^)(s)    =   pi.Qw.   (,) = lim r M^W«)+ *•*(*))   ^ 

f 7re^/r,   for Jfc ^0, 
\ 0, for Jfc = 0, (52) 

(c) K%(W)(s)    =   p2^.^) = lün f ^(«W«) ~ *» • *(*)) eikt, 7' *7,e,w^iv  >       h^]_-KT 8N{t)2 
n-+u./_,iT CiV^ 

7T (|fc| + 1) r"1 eiks/T ,   for Jfc 7t 0, 
27rr-1. fnr fc = n , 27TT-1, for Jfc = 0, ^ 

7T (|*| - 1) r"1 e^/r ,   for jfc ± 0 
0, for Jfc = 0 

dN{tf 

(54) 

W <'!(e*/-)W    =   p^ikt/T.(s) = lim f ^7W(7(.)-^iV(.)) 
7' ^.«'"'V   '       h^Oj-vr dN(t)3 

-7T (|fc| + 1) (|fc| + 2) r-2 e«**/»",   for jfc # 0, 
-4 7T r-2 , for Jfc = 0 for Jfc = 0, (55) 

i^;0(eiWr)(s)     =    p[ >\kt/T {s) = lim r ^^(T^ + ^JV^)) 

T(l*|-l)(|fc|-2)r-V**/'\   forJfc^O, 
0, for A; = 0, (56) 

(e) K^{eik^){s)   = 

K°'Meikt/T)(s)    = 

pJU/r-W = K» r ^)(7(.)-^7V(s)) 

f ireiks/T,   for Jfc ^0, 
\ 0, forfc = 0, 

f -7re^/r,   for Jfc ^0, 
1   -2?r, for Jfc = 0, 

(57) 

(58) 



ff) Kl^{eikt/T){s) yi,e"W        h-+oJ-„ dN(s)dN(t) 6       dt 

K^ikt/T){s) 

=    f -Tr\k\r-leihs/T,   for/t#0, 
\ 0, for Ar = 0, 

-   „Li        (^     v     r d2%(t)(l(s) + h-N{s))   .... =   V    iktiT (s) = lim /       n ' K—LL P
lkt T A, yy,e*</*,e< I     h^0J_nr dN(s)dN(t) 6       d$ 

=    f -7T \k\ r~l eikslr ,   for k #0, 
1  0, forfc = 0, 

(59) 

(60) 

(9) Kl'A(e*"*)(s)   = .2,1 ,£ 
T ^7(0(7(j)-^-^(a))   ttt/r 

' Tr\k\(\k\ + l)r-2eiks/r,   fork^O, 

:iA4/r dt 

0, for fc = 0, (61) 

if7H(e^)(5)    =   pV.u/   M-tim  rrg3^(t)(7(3) + A-iV(.))       , 7' A; P7.e^.W      ümy^ dNt8)dN(t)2 e       di 

W <-?(e*/')(5)    = 

Ä?;2.(e**/r)(«)   = 

ÖJV(s) ÖJV(t)5 

/ -7r\k\(\k\-l)r-2eik^,   forÄ^O, 
1 0, for it = 0, <62) 

P°'2        \s) = lim r ^^)(7(5)-^iV(5))   ,f/ 

f TrdÄl-lJr-1^*'/',   for it #0, 
1 0, forfc = 0, (63) 

P°'\kt/, (s) = lim r ^)(7M + ü-iy(»))w 

f 7T (|Ä:| + 1)r-1 e4**^ ,   forA;#0, 
\27rr-1, for* = 0, ^ 

K?i(em/r){s)   =   Pl'2kt/   (s) = lim T ^flMflzAJM Jkt/r ,f 

=    f -7r|fc|(|A|-l)r-2e^/r!   forifc#o, 
1 0, for it = 0, (6o) 

.    f 7r|*|(|A:| + l)r-V**/'\   for it ^0, 
1  0, forfc = 0, (66^ 

Kl*{eikt'r){s) 
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(j) <?(**"')(*)    =   p°>\kt/r.(s) = Hm I"' ^^m-h.Njs)) 7' ^7,e'*^iv   I       h-tOj-vr 8N{s)3 

=    [ 7r(\k\-l)(\k\-2)r-2eik°/r,   fovk^O. 
[0, fork = 0, (67) 

K^n(s)    =   #»,„.(,) - lim r d^{fJXh • "<'» e^ A 7,e    'e h-toJ-KT dN(s)3 

_    ( -Tr(\k\ + l)(\k\ + 2)r-*eiks/r,   for Jfc ^ 0, 
"    1 -47rr-2, for* = 0. (68) 

Formulae (50) - (68) describe the action of the operators (30) - (48) on the circle for 
functions of the form elkt/r, with k = 0,±1,±2,... Now, it immediately follows from (50) - 
(68) that for any periodic function a : [0, L] -» (C given by its Fourier series 

00 

*(*)=   E  °^iktl\ (69) 
k=—oo 

the operators (30) - (48) (7 is the circle of radius r = ^) assume the form 

T T      °°      1 
(a) K°(c)(s)   =   _Liog(±.)S0 + |.   E   ]i5*e2,Kfc'/L. (70) 

fc= — CO 

fc?i0 
1*1 

(b) K%(v)(s)   =   -2KO0-1T J2 Z^ikslL 

k— — zc 

=   -na(s)-irao, (71) 
00 

fc = — 00 

(c) <'!(a)(S)    =    if!5o + 2f!  f; (|fc| + 1}5fce2^/L 
fc = — OO 

Jk#0 

2TT2    , ,  .      „, ,w ,      2TT2 

=    7rCT(s)-7TCT0, (72) 

7T2^ 27T5 

7T2 

— a(s) + 7r#(a')(s) + ^-a0, (73) 

T 
i 

W  a{s)+nH{a')(s) + ~a0: (74) 

9   2     00 

fc = — 00 

Jk#0 
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(d) f3,0/    w   v 16 7T3 _ 47T3     ^ 
Ä-7ii(a)(5)    =    ——a0-—  £ (\k\ + l)(\k\+2)ake

2*iks/L 

k= — oo 

=    -~a(s) + ,a"{s)-^H{a'){s)-^a^ (75) 

, - 4 7T3        °° 
#7

3;°e(a)(5)    =    -jr   E (\k\-l)(\k\-2)ake
2*iks/L 

k= — oo 

=    8-^a(s)-,a"(S)-6-^.H(a')(s)-8-^do, (76) 

(e) <'|(a)(5)    =   7T  XT  ^e2™**^ 
k^tO 

=    7rcr(s)-7ra0, 
00 

^7°;e(a)(5)    =    -2na0-TT  £  a* e2™*^ 
fc=—oc 

MO 

(f) <'l(a)(5)    =    ~   f;   |*|5fce*'/* 
&= —oo 

k^LO 

9    2      oo 

£ = — OO 

=    -7riJ(a')(S), 

.2,1/  v v 4TT
3
    °° (g) <1(a)(5)     =     -^   J   |fc|(|A.| + 1)5ifce2^./L 

£2 k k=—OC 

2TT2 

,, 4 _3      oo 

tfStoM    =    —^   £   W(l^|-l)afce
2^/L 

*^0 

(h) <'2(a)(5)   =   ^! g {\k\-i)Bke**>/L 
k= — oo 

kjtO 

12 

(77) 

-    -7ra(s) -7ra0, (78) 

I" 

(79) 

(80) 

=    -7ra"(5) + —F(a')(5), (81) 

00 

=   ^a"(S) + ^!^(a')(s); (g2) 



2 7p2 2 7T2 

=    —-^cr(s) + 7rH(a')(s) + — 50 , (83) 
4 _2 o _2     oo 

*?»(*)  =  ^ ^o + =2T £ (1*1+ x)Bk e2™hs/L 
fc= —oo 

k?0 

2 7T2 2 7T2 

=    — a(5) + 7rif(a')(s) + — 50, (84) 

47T3      °° 
« <1(*)to   =   ~jr  E  l*l(l*|-l)?*e2^/L 

fc=—oo 

= ffa"(s) + ^!jff(a')(s)i (85) 

*}»(*)    =   ^  E  1*1 (1*1 + 1) 5* e2-*^ 
fc= — OO 

Jfe?tO 

=    "™"(*) + ^ #(</)(*), (86) 

n Q 4 7T3      °° 
Ü) <•?(*)(*)    =    -TT   E (1*1-1) (1*1 "2)5* e2***'/^ 

i2   * *=—oo 

-"W-^W ~EW)[fi) - ^5o, (87) £2   "V",/-««-'   V) —n\u)\s)--j= 

K»(s)    =   -^Zo-^-   Jt(\k\ + l)(\k\+2)ake
2*ik°/L 

k= — oo 

=   -^a(s) + .o"(s)-^H(*')(s)-8-£c0, (88) 

with afc denoting the fc-th Fourier coefficient of the function a, and # the Hubert transform 
(see (130) in Section 3.3). 

Theorem 2.6 above is proved by direct evaluation of the relevant integrals (in Section 4 
below, we compute these integrals via the theory of residues). Formulae (70) - (88) are an 
immediate consequence of Theorem 2.6; they provide explicit expressions for the operators 
(30) - (48) when 7 is a circle. 

The following theorem follows easily from well-known results (see, for example, [19, 13]), 
here stated in a slightly different form. 

Theorem 2.7 Suppose that 7 : [0,L] -> H2 is a k times continuously differentiate Jordan 
curve parametrized by its arclength, and that r, : [0,1] -> R2 denotes the circle of radius r. 
Then, for any sufficiently smooth function a : [0, L] -)■ ft, 

(a) K°(a)(s)    =   K°(a)(s) + M0(a)(s), (89) 
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(b) K^(a)(s)   = KtfWs) + Ml(v)(s) 

= -7Tff(s) + JVi (a)(s), (90) 

K%{<T)(S)    = <'°e(a)(S) + M1 (a)(5) 

= na(s)+Ni(ar)(s), (91) 

^ <'!WW    =   <,!(a)(5) + MT(a)(5) 
=   7ra(5)+iV1*(a)(5), (92) 

Ä?;l(a)W    =   <'l(a)(5) + A^(a)(5) 

=   -7Tff(s) + iVf(a)(5), (93) 

wAere M^M^Nx : c[0, XJ -> C[0,L] are «rf^ra/ operators wrtA /keme/s m0(s,i) e c^rtO I] x 
[0 £,]), rmfo*), m(5,i) € c*-2([0,L] x [0,1]), respectively. Furthermore, Mf, JVf are tte 
a*'0,ntä °/M, JVi, respectively, and the operator MQ is self-adjoint. 

Theorem 2.7 approximates the operators K°, K\% K]% K°>), K*>\ for an arbitrary smooth 
Jordan curve by the same operators on the circle; Theorem 2.8 below extends these results to 
the operators (33), (34), (39), (40), (43), (44). While Theorem 2.7 is well-known, the authors 
tailed to find Theorem 2.8 in the literature. 

Theorem 2.8 Suppose that 7 : [0,L] -> R2 is a k times continuously differentiate Jordan 
curve parametrized by its arclength, and that 77 : [0,L] -> B2 denotes the circle of radius ±- 
also parametrized by its arclength.  Then, for any sufficiently smooth function a : [0,L] -> &*' 

(a) <?(a)(5)    =    (7rc(5)-^)a(5) + ^2;?(a)(5)+M2(a)(5) 

=   7rc(5)a(5)+7rJf(a')(5)+7V2(a)(5), (94) 

Kl'°e(*)(s)    =   -(*c(s)-^y(s)+K^(a)(s) + M2(o-)(s) 

=   -Kc{s)<T(s)+TTH(a'){s) + N2(a)(s), (95) 

(b) <'|(a)(5)    =   <'|(a)(5) + G2(a)(5) 

=    -7TJff(a')(5) + G2(a)(5), (96) 

Kl^(a){s)    =   <i(a)(5) + G2(a)(5) 

=   -TrH(a')(s) + G2(a)(s), (97) 

(°) <'?(*)(*)    = -(^c(5)-^a(5)+ÜTj;2(a)(5)+M2*(a)(5) 

= -7rc(5)a(5) + 7TJff(a
,)(5) + iVJ(a)(5), (98) 

K°£{o){s)   = (^c(s)-^-y(s)+K°'2
s(a)(s) + M^(a)(s) 

= *c{s)a(s)+TrH(a')(S)+NZ(o-)(s), (99) 
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where c(s) denotes the curvature off at 7(5), and M2, N2, G2 : c[0,L] -» c[0,L] are integral 
operators with kernels m2{s,t), n2(s,t), g2{s,t) € c*-2([0,I]x[0,.L]), respectively. Furthermore, 
M2, 7V| are the adjoints of M2, N2, the operator G2 is self-adjoint, and H denotes the Hubert 
transform (see (130) in Section 3.3). 

Remark 2.9 The formulae (90) - (93) above are somewhat misleading, in that they state very 
simple facts in a relatively complicated manner. Specifically, each of the operators K^°, Kl>°e. 
K-r\v Ki\ is a second kind integral operator with smooth (c*'2) kernel (see, for example, [13]). 

In the case of the circle, the kernels of the operators äJ;?, K$, üfJ;J, K°:\ are identically equal 
to ~TF- Thus> (90) ~ (93) state the trivial fact that the difference of two smooth kernels is 
smooth.  We list (90) - (93) for compatibility with the formulae (89), (94) - (99). 

Observation 2.10 Formulae (89) - (99) have a straightforward interpretation. Specifically, 
each of the operators K«, K%, K)% ü$, K%\, K™, K2% K]% K#, <'2, K«% is a sum 
of a standard operator (the corresponding operator on the circle) and an integral operator with 
a smooth kernel. 

In Section 4 below, a proof of formulae (94) and (95) is given; the proofs of the formulae 
(94) - (99) in Theorem 2.8 are similar and are omitted. Theorem 2.11 below extends the results 
of Theorem 2.8 above to the operators i^;°, K*% K%, Kft, K1^, K?V iÄ K**. Its proof 
is virtually identical to that of Theorem 2.8, and is omitted.        ' 

Theorem 2.11 Suppose that 7 : [0,L] -> R2 is a k times continuously differentiable Jordan 
curve parametrized by its arclength, and that n : [0,L] -» R2 denotes the circle of radius fe, 
also parametrized by its arclength.  Then, for any sufficiently smooth function a : [0,L] -> IR*' 

(a)        K^(a)(s)    =    -(2ir(c(a))
2-^c(«))a(a)+^-|c(a))a"W 

-2irc'{s)H{o-){s) + lLc(s)K
3J(a)(S) + Ms(a)(s) 

=    -27T (c(s))2a(s) + 7Ta"(s) - 2 TTC'(S) H(a)(a) - 3TTc(s) H(a')(s) 

■     +N3{o-)(s), (100) 

K3V»(s)    =    (2 7r(c(a))2-^c(a))a(S)-(7r-|c(a))a"(a) 

-27rc'(s)H(a)(s) + ±c{s)K*?e(a)(s)+M3(a)(s) 

=   2TT (c{s)) a(a)-7ra"(s)-2 7rc'(s)if(a)(a)-37rc(a)if(a')(a) 
+N3(a)(s), (101) 

(b) <'}(*)(*)    =   -(^-fc(a))a"(a) + 7rc'(a)if(a)(a) + ^c(a)^(a)(a) 
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+G3(a)(s) 

=   -na"(s) + irc'(s) H(a)(s) + irc(s) H(a')(s) + G3(a)(s), (102) 

K^e(cr)(S)    =    (T - | c(5)) a"(s) +ivc'(s) H(a)(s) + ~ c(s) K%(a)(s) 

+G3(a)(s) 

=   ™"(s) + 7rc'(s)H(cr)(s) + irc(S)H(<7')(s) + G3(a)(s), (103) 

(c)       K%(o){s)   =    (V - | C(5)) <r"(s) + ^ c(s) K%(a)(s) + G|(a)(S) 

=   7ra"(s)+7rc(S)H(a')(S) + G3(a)(s), (104) 

*}»(*)    =   -(^-fc(S))a''(5) + Ac(5)^;2(a)(5) + G.(a)(5) 

=   -™"(s) + Trc(s)H(a')(S) + G3(a)(S), (105) 

M        <1(a)(5)    =    (2.(c(s))2-^c(s)y(s)-(n-±c(s))cr»(s) 

-7Tc'(S) J3"((7)(s) + ij- c(5) ÜTj;?(a)(s) + A#(a)(s) 

=   27r(c(S)) a(s)-jrff"(s)-7rc,(a)JEr(or)(5)-3 7rc(5)fr(a,)(5) 

+*3 (*)(*)> , (106) 

*)W    =   -(27r(c(5))2-^c(5))a(S)+(7r-^c(5))a"(5) 

-7rc'(s)H(a)(s) + ±.c(S)K°:l(a)(s)+MZ(a)(s) 

=   -2 7r(c(s)) a(S) + 7ra"(5)-7rC'(5)JH'(a)(S)-37rc(5)Jff(a')(s) 

+JWO0, (107) 

wAere c(s) denies *Ae curwatare 0/7 a* 7(s), and M3, N3, G3 : c[0,L] -» c[0,L] are mftuni/ 
ZTi°rrS ~ith kernelsm^s>V> n^s^> 9z(s,t) € c*-*([0,ü]x[0lL])l nspectiody. Furthermore, 
M3, N3, G3 are the adjomts of M3, N3, G3, and H denotes the Hubert transform (see (130) 
in Section 3.3). (       l      J 

2.4    Computational Observations 

In the numerical solution of elliptic PDEs, one is often confronted with the task of evaluating 
some (or all) of the operators (30) - (48) numerically. While this class of issues will be discussed   ' 
in detail in a sequel to this paper, here we observe that an inspection of the formulae (50) - (68) 
(89) - (93), (94) - (99), (100) - (107) immediately shows that each of the operators (30) - (48) is 
a combination of the following: integral operators with smooth kernels, integral operators with 
the logarithmic singularity on the diagonal, the Hubert transform, the derivative of the Hilbert 
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transform, and the second derivative. The techniques for the accurate integration of smooth 
functions have been available for hundreds of years, and the numerical evaluation of the second 
derivative presents no serious problems. Effective techniques for the numerical evaluation of 
the Hilbert transform are less well-known, but have also been available for many years (see. 
for example, [16]). Efficient integration of logarithmically singular functions is also not very 
difficult (see [15, 8, 2]). The only possible source of problems is the derivative of the Hilbert 
transform; quadrature rules for the evaluation of the latter have been constructed, and will be 
published in [10]. Thus, there exist rapidly convergent schemes for the numerical evaluation 
of all of the operators (30) - (48), and, therefore, for the discretization of any problem of 
mathematical physics that has been reduced to a set of integro-pseudodifferential equations 
involving any (or all) of the operators (30) - (48). 

Of course, when a problem of mathematical physics is discretized, one of principal issues 
is the condition number of the obtained system of equations. An examination of the formulae 
(51), (57), (52), (58) immediately shows that the operators K]% K°'\, K^0

e, K*>\ are asymp- 
totically well-conditioned (being a sum of the identity and a compact operator). The spectrum 
of the operator K° decays as 1/k with A: the sequence number of the eigenvalue (see (50)), and 
its n-point discretization will (asymptotically) have condition number ~ n. Each of the oper- 
ators K^-v X^'., Ky'ti, K

2fe, üfi.i, K°<2 has a spectrum that grows linearly, and the n-point 
discretization of each of them will have condition number n. Finally, each of the operators 
K-r',u Kf',ii K-,',-v Kf',-n K*% K%'\, K\^ ÜC°>! has a spectrum that grows as k2; an n-point dis- 
cretization of any of them will have condition number ~ n2. Thus, whenever the problem to be 
solved results in the discretization of any one of the operators K° K2'° K1'1-  K0'2 K2<°  K1'1 

fc-0,2    fc-3,0    ~2,1    ~1,2    £.0,3    ^3 0    „21    r/12    rWl i    , .       7'     7'''      7'"      7'"      7'6'      7'6' A7,e> A
7,i' A7,i> A7,i' A7,i' A7> Ki\v Ki% K»% there is a potential for condition number 

problems, similar to those encountered with direct discretization of differential equations. 
Fortunately, formulae (50) - (68) suggest a solution. Specifically, an examination of the 

formulae (50), (53), (89), (94) immediately indicates that each of the operators K° o K2'°, 
Ky',i ° #° is a sum of multiplication by a constant with a compact operator, i.e. 

A-7°o<? = 7r2.7 + <'20, (108) 

^0^ = ^./ + ^, (109) 

with M20'00, M™>20 compact operators L2[0,L] -> L2[0,L}. Similarly, 

K°oK2*=*2.I + M™'2°, (110) 

K%oK° = **.l + M*>* (m) 

and 

K°oK^ = -.2.I + M^\ (112) 

^'W-x'-J + C (H3) 
ä?Oü:W =-^.7 + ^,11, (114) 
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K%oK° = -rr>.I + M^, (115) 

and 

K°oK% = **.I + M«>» (116) 

<'?Oä? = ^.J + <.«»> (117) 

K»oK^ = ^.I + M™>«\ (118) 

^T^W-Z + M^; • (119) 

all of the operators Af,11-00, M^00, M?0-11, M«0-11, M?2-00, M°2-°°, M?0'02, Me
00'02 are compact 

In other words, the operator K° is a perfect preconditioner (asymptotically speaking) for each 
of the second order pseudodifferential operators of potential theory in two dimensions; in turn, 
Ky is preconditioned by each of the operators (94) - (99). 

Expressions (100) - (107) contain the second derivative, and are, clearly, preconditioned 
by the operator of repeated integration 72 : L2[0,L] -»• L2[0,L], defined by its action on the 
functions e%'m'xlL via the formula 

Wm-X'L) = h ■^■X,L- (120) 

In other words, for each of the operators (30) - (48), there is available a straightforward 
preconditioner. Numerical implications of these (and related) observations will be discussed in 

3    Analytical Preliminaries 

3.1    Principal Value Integrals 

Integrals of the form 

/ 

6 V(t) 
—sdt, (121) 

where s € (a, b), do not exist in the classical sense, and are often referred to as singular integrals. 

Definition 3.1 Suppose that <p is a function [a,b] -> R, s € (a,b), and the limit 

exists and is finite.  Then we will denote the limit (122) by 

P-V-/a  —dt, (123) 

and refer to it as a principal value integral. 

Theorem 3.1 Suppose that the function <p : [a,b] -* B. is continuously differentiable in a 
neighborhood of s G (a, b). Then the principal value integral (123) exists. 
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3.2    Finite Part Integrals 

In this paper, we will be dealing with integrals of the form 

/ (T^di' (124) 

where s e (a,b), which are divergent in the classical sense.  This type of integrals are often 
referred to as hypersingular or strongly singular. 

Definition 3.2 Suppose that <p is a function [a, b] -> H, s € (a, b), and the limit 

exists and is finite.  Then we will denote the limit (125) by 

,   rb fit) 
f-P7a   (1^5* *' <126) 

and refer to it as a finite part integral (see, for example, [7]). 

The following obvious theorem provides sufficient conditions for the existence of the fi- 
nite part integral (125), and establishes a connection between finite part and principal value 
integrals. 

in Theorem 3.2 Suppose that the function ip : [a, b] -»• R is twice continuously differentiable 
a neighborhood of s G (a, 6).  Then the finite part integral (126) exists, and 

t     f
b   f{t)    Jx     d r*> m(t) 

3.3    The Hubert Transform 

For an arbitrary periodic function tp e L2
[-K,-K] and any integer k, we will denote by (pk the 

Ä-th Fourier coefficient of tp, defined by the formula, 

1    /*7r 

^=27 y_ff ^ &~iks ds' (i2g) 

00 

f(t) =   E  &ßttt. (129) 

so that 

fc=- ■00 

for all t € [—7T, 7r]. 
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Definition 3.3  The Hubert transform is the mapping H : L2[-rr, n] -> L2
[-K. TT], given by the 

formula 
oo 

H{<p)(s)=   £  -isgn(k)(pke
iks, (130) 

A:= —oo 

with ip 6 L2[-7r,7r] an arbitrary function.   The function H(ip) : [-TT, TT] -> C is often referred 
to as the conjugate function of <p. 

The following theorem summarizes several well-known properties of the Hilbert transform 
(see, for example, [9]). 

Theorem 3.3 (a) The mapping H : L2[-ir,ir] -> L2[-ir,ir] is bounded. 
(b) For any integrable <p, the identity 

H(<p)(s) = p.v.— r      ^     dt h <?i \ K^,K '     P    27ry_Ttan(^)dt' (131) 

holds almost everywhere. 
(c) For any function <p e cx[—K,TT], 

Htf){8) = ((H(<p)Y) (S) = f; |fc| $k e*.. (132) 
fc = —OO 

In other words, 

HD = DH, (133) 

where D = £ is the differentiation operator. 

3.4    Boundary Integral Operators 

In this subsection, we define boundary the integral operators K1'0, K2'0, K3'0, K°>1 K1'1 K2'1 

K°'2, K^2, K°'3, that are closely related to the operators (31) - (48] defined inSection^. 7 

Definition 3 4 Suppose that the function a : [0,L] -+ H is sufficiently smooth. Then we 
denote by K^,K^ : c[0,L] -> c[0,L] and K2'0, K*>°, K^, K2>\ K«>2, K^, K™ : ^[0,1] -> 
c[0,L] the operators defined by the formulae 

*n-)M. ,,f ***$4>.w*.        (135, 
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WM = f.p.f%g^.W*, (MO) 

respectively. 

Remark 3.4 Obviously, the operators üty1, üf°>2, ÜT°'3, Ä"1'2 given by the formulae (137), 
(140) - (142) are the adjoints of the operators K*<°, K%>°, K*>°, K^1 defined by (134) ~ (136), 
(139). Furthermore, K^1, defined by (138), is self-adjoint. 

4    Proof of Results 

In this section we prove the results from Section 2. The outline of this section is as follows: 
First, we consider the case where 7 is a circle. We provide the proof for Theorem 2.6. In 
Lemma 4.2 we give explicit formulas for the boundary integral operators (134) - (140) for the 
case where 7 is a circle. Then, by combining Theorem 2.6 and Lemma 4.2, we immediately 
get the so-called jump conditions for the operators (12) - (25) on a circle. These are stated in 
Theorem 4.3. 

Next, we consider the case where 7 is an arbitrary and sufficiently smooth Jordan curve. 
Since the proof of the identities (94) - (99) in Theorem 2.8 are similar, we only provide the 
proof for (94) and (95). In fact, (94) and (95) in Theorem 2.8 follow immediately from Theorem 
4.7 and Lemma 4.6. The proof of Theorem 4.7 is based on Theorem 4.3 and the approximation 
(178) given in Lemma 4.5. 

Proof of Theorem 2.6 Since the proofs for the identities (50) - (64) are nearly identical, we 
only provide the proof for the interior limit of the quadruple layer potential (53). Further, it 
is enough to prove (53) for the case r = 1; the general case follows by a simple transformation 
of variables. We choose the parametrization 

7(«) = (cos(t),sin(t)), (143) 
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where t G [—n,n]. It immediately follows from (143) that 

f j — it 

•* d^^-h.Njs))   ikt 

dN{ty 

•f. '* 1 - 2 • (1 - h) ■ cosjt -s) + (l- hf ■ cos (2 (t - s)) 
elktdt 

(1 + (1 - h)2 - 2 • (1 - h) ■ cos(t - s)Y 

= e*« ■ r 1-2-(1-^)-^) + (l-^.cos(2^)   ikt 
L«      (l + (l-/1)2_2.(l-/l).Cos(t))2 ' (144j 

for any s € [-ir,ir].  We will use calculus of residues to evaluate the integral (144).   To this 
effect, the substitution 

z = eit, (145) 

converts (144) into 

eiks    [* 1 - 2 • (1 - ft) • cos(f) + (1 - h)2 ■ cos(2t)   ikt     _ 

L*      (l + (l-h)2-2-(l-h)-cos(t))2      e 

_piks    f       -i (1 ~(l-h) (z + z-1) + \ (1 -h)2 (z2 + z-*)\     . 

and after simple algebraic manipulation, we get 

-i, (\-{l-h){z + z-1) + I (1 - ft)2 (z2 + z-2)' 

(l + (l-Ä)2-(l-/0(z + ;r-i))2 7 

1    / izfc+1 iz*-i 

zfc = 

2    V   ((l-/i)-z)2      (z(l-Ä)-l)2_ 

Substituting (147) into (146), we obtain 

(147) 

/_ 
•* d2$y{t)(j(S)-h-N(s))  m 

dN{t)< 
dt = 

= eiks r    l  /      izk+l izk~l     \ 

J\z\=i2'{   ((l-h)-z)2~ (z(l-h)-l)2    dZ (148) 

Now, formula (53) for r = 1 follows by applying a standard residue calculation to (148). D 

Remark 4.1 Formulae (50) - (52), (57) - (58) follow from well-known results (see for example 
[11, 3J). While the derivation of (53) - (56), (59) - (64) is quite similar, the authors failed to 
find them in the literature. 

The operators K™, K2<\ K3/, K^\ K2>\ K«>\ K°>2, K0/, K)>2 defined by (134) - (141), 
assume a particularly simple form on the circle. The following lemma follows immediately from 
an elementary computation. 
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Lemma 4.2 Suppose that 7 is a circle of radius r parametrized by its arclength with exterior 
unit normal denoted by N. Then, for any sufficiently smooth function a : [—irr, irr] -> (D: 

(a) K]>\o){s)    =    r-?£ldt = -irao, (149) 

(b) K^(a)(s)   =   Lj>r(j-+        I ) a{t)dt 
J-Kr \2r2     2r2 cos(i7^) -2r2J 

=   7rr_1CT0 + 7rif(CT')(s), (150) 

K^(a)(s)    =   i.v.r(-L  I ) a{t)dt 
J-rr\   r6     2r3 cos(Lr

£) -2r3J 
(0) 

(9) 

(h) 

=   -2-Kr-2dQ-Zixr-lH{o'){s), (151) 

" _a(t) 

7TT 

(d) K°>\a)(s)   =     r_^^ = -7rao5 (152) 

(e)      *;»W . f.p.£__£01_,( = _^M(s),      (163) 

(!) **<„)(.>   =   tp.£ar,eM^)_aT><tt-„-g(y)W,       (154, 

=   Trr-^o+vr.HVXs), (155) 

*«MM  = tp.£__^__(i( = lrl.-.HMW,     (156) 

a)     A« w w = f.p. £ (-1 - ^B.(^)_2>J) .«>« 
=   -27rr-250-37rr-1ff(a,)(a)I (157) 

Wiere # denotes the Hubert transform (see (130) in Section 3.3). 

The following theorem is an immediate consequence of Theorem 2.6 and Lemma 4.2. It 
summarizes the so-called jump conditions for the integrals (12) - (29) on the boundary T, 
where T is a circle. 

Theorem 4.3 Suppose that 7 is a circle of radius r parametrized by its arclength with exterior 
unit normal denoted by N. Further, suppose that H denotes the Hubert transform (130). Then, 
for any sufficiently smooth function a : [—nr, irr] -» €, 

(a) K^(a)(s)   =   -naW+KWicXs), (158) 
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#};°e(cr)(s)    =   7ra(s)+K}i'
0(a)(s), (159) 

(b) <»!(a)(«)    =   TTr-V^ + ^f^)^), (160) 

*?»(*)    =    -*r-lo(s) + K$0(<T)(s), (161) 

fa <'°(CT)(5)    =    -27rr-2a(s) + 7ra"(S)+K*>°(a)(S), (162) 

if7
3;°e(a)(S)    =   2irr-2c(s)-7ra"(s) + K3/(a)(S), (163) 

W <'}(*)(*)   =   *<r(s) + (KW)*(<T)(a)t (164) 

4'e(ff)(s)    =    -**(*) +(*.},0)>)(«), (165) 

(e) *#(*)(«)    =   ^;
1

e(a)(5)=^1(a)(S) = -7riJ(a')(S), (166) 

(A <'}WW    =   -**"(«)+ Ä*.1(a)(«), (167) 

K%(a)(s)   =   Tra"(s)+K2'l(a)(s), (168) 

(9) <'?(*)(*)   =   -Tr^aW+ ^(^(5), (169) 

Ä?f«WW    =   Tr-^W + ^WW, (170) 

w     *;>)(«) = ^w + i^rww, (in) 
4'eW(«)    =    -**"(«)+ (Ä?'1)V)W, (172) 

ft <1(a)(s)    =   2irr-2a(s)-7ra"(s) + (K*'0)*(o)(s), (173) 

^?;3e(CT)(s)    =    -2nr-2a(s) + iro"(s) + (K*>0)*((T)(s). (174) 

We now proceed to the case where 7 is an arbitrary sufficiently smooth Jordan curve. The 
following obvious lemma can be found in most elementary textbooks on differential geometry 
(see, for example, [4]). 

Lemma 4.4 Suppose that 7 : [0, L] -» 1R2 is a sufficiently smooth Jordan curve parametrized 
by its arclength with the exterior unit normal and the unit tangent vectors at j{s) denoted by 
N(s) and T(s), respectively. Then, there exist a positive real number a (dependent on 7), and 
two continuously differentiable functions f,g : (-a, a) -> R (dependent on j), such that for 
any s € [0, L], 

7(s + t)- 7(5) = (t + t3 ■ f(t)) ■ T(s) ~(^-+t3- g(t)) ■ N(s), (175) 

for all t G (-a, a), where the coefficient c in (175) is the curvature of 7 at the point 7(a). 
Furthermore, for all t e (-a, a), 

\f(t)\<\h'"(s)\\, (176) 

I*WI<IIV"(«)||. (177) 
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In the local parametrization (175), the potential of a quadrupole located at j(s) and oriented 
in the direction N(s) assumes a particularly simple form, given by the following lemma. 

Lemma 4.5 Suppose that 7 : [0,L] ->■ R2 is a sufficiently smooth Jordan curve parametrized 
by its arclength.  Then, there exist real positive numbers A, a and ho such that for any s G [0, L] 

d2^{s+t)h(s) - h ■ N(s))       h2 - t2       cht2 (5h2 + t2) 
dN(s + t)2 

(h2 + t2Y {h2 + t2y 
<A. (178) 

for all t e (-a,a), 0 < h < ho, where the coefficients in (178) is the curvature 0/7 at the 
point j(s). 

Proof. Without loss of generality, it is sufficient to prove the lemma for the case where 
5 = 0, 7(0) = 0, and V(0) = (1,0). Substituting (175) into (9) and evaluating the result at 
x = (0,h), we obtain 

d2%(t)(x) Po(M) 
dN(t)2 (h2+t2 + r{h:t))2> 

where po, r : R,2 -¥ IR, are functions given by the formulae 

ct2     c2tz 

(179) 

Po(M)   = 

ct4 

I 
ctb 

h-t + cht + - 2~ + 3ht2(f(i) + g(t))-2t3(2f(t)-g(t)) 

C-^(f(t) + 5g(t))+ht3(f'(t)+g'(t)) -t\f'(t)-g'(t))-3t5(f(t)2+g(t)2) 

-C-£(f'(t) + 9'(t)) ~ t6 f(t)(/'(*) - </(*)) - t*g(t)(f'(t) + g'(t)) 

cr    &t ,2+3 

h + t-cht+^- + ^jr + Zht2[f{t)-g{t))+2tz[2f{t)+g{t)) 

ct* 
I 

ct5 

-C-^(f(t)-5g(t))+ht*(f'(t)-g>(t))+t*(f'(t)+g>(t))+3t5(f(t)2+g(t)2) 

~-r(/'(*) -9'(t)) +t6f(t)(f'(t) +g'(t)) -t6g(t)(f'(t) - g'(t))   , (180) 

(?tA 

r(h,t)    =   -cht2-2ht3g(t) + — + 2tif(t) + ct5g(t)+t6(f{t)2 + g{t)2).        (181) 

We also introduce the notation 

Pi(M) = (h2 + t2 + r(h,t)f - (h2+t2f = 2(h2+t2)-r(h,t)+r(h,t)2 . (182) 

Obviously, (180) - (182) are algebraic combinations of/, g, f, g', t, and h, and an examination 
of formulae (180) - (182) immediately shows that there exist positive real numbers a, h0, and 
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C (dependent on 7) such that 

Po(M) -h2 + 1 t2 -Seht2 < C(h2 + t2f, (183) 

Po(M) -pi(h,t) - 2cht2 {h2 + t2) (h2 - t2) < C(h2 + t2)\ (184) 

Po{h,t) ■ Pl(h,t)2 < C(h2 + t2)\ (185) 

Pi(M) < 1, (186) 
{h2 + t2)2 

for all h<hQ,te (-a, a). Substituting (182) into (179), we have 

d2%(t)(x)    _ po(M) 
^)2 (Ä2 + t2)2(1 + ^) 

B-^TIT^. 
Po(M) 

(h2 + t2)2^   -'   (h2+t2) 
(187) 

where the convergence of the series follows from (186). Combining (183) - (185), we obtain 

d2$l{t){x)        h2-t2       cht2(5h2 + t2) 
8N(t)2 < 

p0{h,t)-h2 + t2 -Zcht2 

+ 

{h2 + t2)2 (h2 + t2)3 

p0(h,t) -Pl(h,t) -2cht2 (h2 + t2) (h2 - t2) 

(h2 +12)4 

2 

(h2 +12)2 

Po(M) -Pi(h,t)k 

+ E 
Jfc=2 (h2+t2) 2fc+2 

<   2C + C- 
a 

1-a' 

with a defined by the formula 

a =        sup 
h<ho , t£(-a,a) 

Pi{h,t) 

(h2 + t2y 

Now, introducing the notation 

A = 2C + C- 
a 

(188) 

(189) 

(190) 
1-a' 

we obtain (178). D 
Lemma 4.2 provides an explicit formula for the operator K2>°, defined in (135), in the 

case when 7 is a circle. The following lemma shows that the operator K2'0 on an arbitrary 
sufficiently smooth Jordan curve of length L, is a compact perturbation of K2'0 on the circle 
of radius ^. Its proof is an immediate consequence of estimate (178) in Lemma 4.5. 

Lemma 4.6 Suppose that 7 : [0, L] -> R2 is a sufficiently smooth Jordan curve parametrized 
by its arclength, and that 77 : [0,L] -> R2 denotes the circle of radius j£, also parametrized 
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by its arclength. In addition, suppose that a : [0, L] -> 1R is a twice continuously differentiable 
function.  Then, 

where M2 : c[0, L] -> c[0, i] is a compact operator defined by the formula 

Furthermore, for any t^s, 

2(N(t)Ms)-l(t))2      1  /2TT\
2 

m2(s,t) = im>m^®L-i(*i\ 

|II7W-7(«)II2-2(A)   (l-cos(^-t))) 

||7W - 7(i)ll2 2 (^)2 (l - cos (£(« - *))) 

and /or £ = s, 

^2(5,5) = ^(c(S))2-A^)2, (194) 

where c{s) is the curvature of 7 oi iAe jpom« y{s), and m2 : [0,1] x [0,L] -4 R is the kernel of 
the operator M2. 

The following theorem provides the so-called jump conditions for the operators (14) and 
(15) on the boundary T, when V is sufficiently smooth. 

Theorem 4.7 Suppose that 7 : [0,1/] -» JR.2 is a sufficiently smooth Jordan curve parametrized 
by its arclength.  Then, for any sufficiently smooth function a : [0, L] ->• JR., 

K2»(a)(s) - <'°(a)(s) = 

_ f (d2$l{t)(7(s) + h.N(s))     a2$7(t)(7(s)-tt-iV(s)^ 

"iToy0 ^      MW öNW
2 )a{) 

= -2irc{s)o-(s), (195) 

and 

K2%o){s) + K2»{o){s) = 

rL fd2$7{t)(7(s) + h-N(s))     c?2$7(t)(7(s) - n ■ iV(s))' - lim f      d^^S> + h ■ N^  , y*7(«)W*) ~ h ■ *(«)) \    ,+w+ 

-Ä/o V flüvxö5   aw Ja(f)dt 

fL ^2$
7(t)(7( 

/o       ÖJV(<)2 

„    /■£ a2$7m(7(5)) 
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where c{s) denotes the curvature of 7 at 7(5). In other words, the quadruple layer potential 
with density a (see (6)), can be continuously extended from QtoÜ and from H2 \H to R2 \fi, 
with the limiting values given by the formulae 

r^2$7(()(7(5)) 
PZM    =   K2

1»{o-){S)=itc(s)o-{s)+i.V.^ 

Jo dN(t) 

a(t) dt, 

2— a{t) dt. 

(197) 

(198) 

Proof. Without loss of generality, we can assume that s # 0 and s ^ L. We begin by 
proving (196). Suppose that r, : [0,L] -» R2 is the circle of radius ^ parametrized by its 
arclength. We define the functions E*,Ej : [0,1] x [0,L] -> K via the formulae 

Xh(st)   =    ^7(t)(7W + A'^))  ,  d2%(t)(l(s)-h-N(s)) 
7   ' ' cW(*)2 Ötf(t)2 

^(t)(^) + ^-AT(5))     a2^(t)(77(S) - Ä • N(s)) s;(«,o = 

(199) 

(200) diV(i)2 " ÖAT(<)2 

and, substituting (199), (200) into (196), obtain the identity 

ir7
2;°e(a)(5) + 4'>)(s) = lim^^ (201) 

Substituting (160), (161) in Theorem 4.3 into (201), we have 

K^e(o-)(s) + K2^(a)(S) = 

fL d2*v{t)(v(s)) 
2-f.p. / 

Jo 
r(t) dt + lim Jo   (E*(s, t) - E;(S, t)) a{t) dt. (202) dN(t)2 

Due to Lemma 4.5, there exist positive real constants C0, a, and /»0 such that for any s € [0, L] 

S;(S,t)-Ej(S,i)|<C0, (203) 

for all 11 - s\ < a, 0 < h< h0. For any t ^ s and sufficiently small h, both E*($, t) and Ej(s, r) 
are c00-functions. Therefore, there also exist positive real constants hlt G\ such that for anv 
S6[0,I] 

S^O-Sj^tJ^d, (204) 

for all 1t - s\ > a, 0 < h< /ix. Now, applying Lebesgue's dominated convergence theorem (see, 
for example, [18]) to the second integral of the right hand side of (202), we obtain 

&^L(E?(*-*)-E5(*.*))ffW* = 

~ 2 Jo [~dNW2 dNW   )a{) (205) 
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Finally, formula (196) immediately follows from the combination of (202), (205) with (191), 
(192) in Lemma 4.6. 

We now proceed by proving formula (195). We define the functions A*, A£ : [0, L] x [0, L] -* 
IR via the formulae 

Ah(st)    =    d2*y(t)(l(s) + h ■ N{s))     c?2<fr7(t)(7(s) - h ■ N(s)) 
l{ ' ) dN(t)2 dNffi 

&i(*,t) = d2$r,(t)(ri(s) + h-N(S))     8%{t) (rj(s) - h ■ N(s)) 

(206) 

(207) 
dN(t)* dN{t)2 

and, by substituting (206), (207) into (195), obtain the identity 

s^-i&r^(''*)ff(t)*+i&r(^*)-^-^*))ffwÄ- 
(208) 

Substituting (160), (161) in Theorem 4.3 into (208), we get 

K^{a){s) - K%{a)(8) = 

= -27rC(S)cr(5) + lim^   (A*(a,t)-^^.Aj(a,t))cr(t)Ä.      (209) 

Due to Lemma 4.5, there exist positive real constants C0, a, and h0 such that for any s € [0, L] 

^M)-^-A;M) <C0, (210) 

for all 11 - s\ < a, 0 < h< h0. For any t ^ s and sufficiently small h, both A*(s, t) and Aj(s, t) 
are c°°-functions. Therefore, there also exist positive real constants hx, C\ such that for any 
s£[0,L] y 

*?(*,*)-^-Afc,*) <Ci, (211) 

for all 11 - s\ > a, 0 < h < h\. Applying Lebesgue's dominated convergence theorem (see, for 
example, [18]) to the second integral of the right hand side of (209), we have 

Lmof (A?^ - ^r • A"(M)) ^t)dt = jf & (A?M ~ c-^r ■ Ai^) ^dt- 
(212) 

Examining (206), (207), we obviously have 

a(*«)-^AV))=0. (213) 

Therefore, the integral on the right hand side of (212) is zero, from which (195) follows imme- 
diately. D 
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5    Generalizations 

We have presented explicit (modulo an integral operator with a smooth kernel) formulae for 
integro-pseudodifferential operators of potential theory in two dimensions (up to order 2). The 
work presented here admits several obvious extensions. 

a. Formulae (89) - (107) have their counterparts for elliptic PDEs other than the Laplace 
equation. Indeed, for any elliptic PDE in two dimensions, the Green's formula has the form 

G{x, y) = <f>{x, y) ■ log(||x - y||) + V>(x, y), (214) 

with (f>, ip a pair of smooth functions; derivations of Section 4 are almost unchanged when 
log(||rE - y||) is replaced with (214). In particular, the counterparts of the formulae (89) - (99) 
for the Helmholtz equation (with either real or complex Helmholtz coefficient) are identical to 
(89) - (99); the counterparts of the formulae (100) - (107) for the Helmholtz equation do not 
coincide with (100) - (107) exactly; instead, they assume the form 

(a) K*'°(a)(s)    =   -2ir(c(s)fa{s)+4:Trk2a(s) + ira"{s)-2Trc'{s)H(a)(s) 

-37rc(s)H(a')(s) + N3(a)(s), (215) 

Kyi(<r)(s)    =   2ir(c{sjfa(s)-4irk2a(s)-ira"(s)-2irc!{s)H(o)(s) 

-3Trc(s)H(o')(S) + N3(cT)(s), (216) 

(b) K^)(a)(s)   =   -4irk2a(s)-7ra"{s) + Trc'{s)H(o){s)+irc{s)H(a')(s) 

+G3{a){s), (217) 

Ä?,'e(*)(*)    =   4Trk2a(s) + Tra"(s) + Trc'(s)H(a){s)+7rc{s)H(a'){s) 

+G3{a)(s), (218) 

(c) K%(a)(s)    =   4irk2cr(s) + 7ro"(s) + irc(s)H(a')(S) + G3{a)(s), (219) 

Ky'2e(<r)(s)    =   -4nk2<j(s)-na"(s) + irc(S)H(a')(s) + G3(a)(s), (220) 

(d) K°'*(a)(s)    =   27r(c{s))2a(s)-4nk2a{s)-ira"{s)-Trc'{s)H(a){s) 

-ZncWHWW + NsiaHs), (221) 

K°fe(a)(s)    =   -2iv(c{s))2a(s)+4nk2a{s) + iva"(s)-irc'(s)H{a){s) 

-3TTc(s)H{a')(s) + N3(a)(s), (222) 

where A; G € is the Helmholtz coefficient, and the operators N3, G3, N3, G3 : L2[0,L]-± L2[0, L] 
are compact. 

b. The derivation of the three-dimensional counterparts of formulae (89) - (107) is completely 
straightforward; such expressions have been obtained, and the paper reporting them is in 
preparation. 
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c. In certain areas of mathematical physics, one encounters integro-pseudodifferental equations 
whose analysis is outside the scope of this paper. An important example is the Stratton-Chew 
equations, to which Maxwell's equations are frequently reduced in computational electromag- 
netics. Another source of such problems is the scattering of elastic waves in solids. Problems 
of this type are currently under investigation. 
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We present a procedure for the design of high order quadrature rules for the numerical 
evaluation of singular and hypersingular integrals; such integrals are frequently encountered 
in solution of integral equations of potential theory in two dimensions. Unlike integrals of 
both smooth and weakly singular functions, hypersingular integrals are pseudo-differential 
operators, being limits of certain integrals; as a result, standard quadrature formulae fail 
for hypersingular integrals. On the other hand, such expressions are often encountered 
in mathematical physics (see, for example, [11]), and it is desirable to have simple and 
efficient "quadrature" formulae for them. The algorithm we present constructs high-order 
"quadratures" for the evaluation of hypersingular integrals. The additional advantage of the 
scheme is the fact that each of the quadratures it produces can be used simultaneously for the 
efficient evaluation of hypersingular integrals, Hilbert transforms, and integrals involving 
both smooth and logarithmically singular functions; this results in significantly simplified 
implementations. The performance of the procedure is illustrated with several numerical 
examples. 

Numerical Quadratures for Singular and Hypersingular 
Integrals 

. P. Kolm and V. Rokhlin 
Research Report YALEU/DCS/RR-1190 

January 28, 2000 

The first author has been supported in part by DARPA/AFOSR under Contract F49620-97- 
1-0011. The second author has been supported in part by DARPA/AFOSR under Contract 
F49620-97-1-0011, in part by ONR under grant N00014-96-1-0188, and in part by AFOSR 
under Contract F49620-97-C-0052. 
Approved for public release: distribution is unlimited. 
Keywords:  Numerical Quadrature, Hilbert Transform, Hypersingular Integrals, Pseudo- 
Differential Operators 



1    Introduction 

Numerical integration is one of most frequently encountered computational procedures. 
When smooth functions are to be integrated, classical techniques tend to be adequate, 
especially in one and two dimensions; one of most efficient general-purpose tools consists of 
various versions of nested Gaussian quadrature rules (see, for example, [20, 18, 3. 6]). In 
cases where extremely efficient special-purpose quadratures are warranted, Gaussian (and 
more recently, Generalized Gaussian) quadratures are the approach of choice. 

When singular functions are to be integrated, the situation tends to be less satisfactory. 
Special-purpose Gaussian quadratures can be easily constructed for functions of the form 

f{x) = s(x)-<f>(x), (1) 

where s is a fixed singular function, and <f> is smooth. On the other hand, such situations 
are relatively rare; much more frequently, one is confronted with integrands of the form 

f(x) = s(x) ■ 4>(x) + i/>{x) (2) 

where s is a fixed singular function, and <j> and iß are two distinct smooth functions (often 
several different singularities are involved). Here, Gaussian quadratures can not be used 
directly, and during the last several years, Generalized Gaussian quadratures have been 
developed as a tool (in part) for dealing with such situations. 

The situation is further complicated when (as frequently happens in potential theory) 
the "integrals" to be evaluated are not, strictly speaking, integrals, but involve expressions 
of the form 

L ~x dx' (3) 

-i T^xJ dX' (4) 

etc., understood in the appropriate finite part sense (in the engineering literature (4) is 
often referred to as the "hypersingular" integral). Normally, "integrals" (3) - (5) (and sim- 
ilar objects) are treated via special-purpose techniques (product integration, interpolatory 
quadratures, etc.). A drawback of this approach is the need to separate singularities of 
different types, so that each can be treated via an appropriate procedure. For example in 
(2), one would need to have access to each of the functions 0, V individually, as opposed to 
being able to evaluate the functions in toto (the latter situation is frequently encountered 
m practice). 

^    In this paper, we design a collection of algorithms for the construction of high-order 
quadratures" for the evaluation of hypersingular integrals.  The additional advantage of 

the scheme is the fact that each of the quadratures it produces can be used simultaneously for 

I. 
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the efficient evaluation of hypersingular integrals, Hilbert transforms, and integrals involving 
both smooth and logarithmically singular functions; this results in significantly simplified 
implementations. 

Remark 1.1 Unlike the quadratures for functions of the form (2), the quadratures con- 
structed in this paper are not convergent in the classical sense. Instead, they produce a 
prescribed accuracy for a prescribed set of functions, such as Legendre polynomials, of all 
orders no greater than some natural number n, Legendre polynomials multiplied by log- 
arithms, etc. Due to the triangle inequality, it is easy to estimate the precision produced 
when such quadratures are applied to linear combinations of Legendre polynomials, Legendre 
polynomials multiplied by logarithms, etc. Finally, we observe that if the chosen accuracy is 
sufficiently small (such as the machine precision), the behavior of the resulting quadratures 
is indistinguishable from rapid convergence (as can be seen from, for example, Figures 2 - 
3 in this paper). 

Remark 1.2 During the last two decades, numerical techniques have been developed in the 
computational potential theory (especially, for the Helmholtz equation and related problems 
involving time-domain Maxwell's equations) that replace classical integral equations with 
combined integro-pseudo-differential equations. The reasons for these recent developments 
are involved, and have to do with so-called "spurious resonances" (see, for example, [4. 
15, 16, 19]). Without getting into the analytical details, we observe that the interest in the 
numerical solution of such integro-pseudo-differential equations is growing rapidly, and one 
of principal motivations behind this work is the design of appropriate rapidly convergent 
discretization schemes. 

The paper is organized as follows: In Section 2, the necessary mathematical and nu- 
merical preliminaries are introduced. In Section 3, we develop numerical quadratures for 
integrands that are algebraic combinations of smooth functions and functions with singu- 
larities of the form log|x|, ±, £. In Section 4, we describe a numerical procedure for the 
construction of the quadratures from Section 3.2. Section 5 contains numerical examples 
of some of the quadratures developed in this paper. Finally, in Section 6 we briefly dis- 
cuss extensions of results of this paper to singularities other than log|x|, I, \, and to 
two-dimensional singular and hypersingular integrals. *    * 

2    Mathematical and Numerical Preliminaries 

In this section, we summarize several results from classical and numerical analysis to be 
used in the remainder of this paper. Detailed references are given in the text. 

2.1    Principal Value Integrals 

Integrals of the form 

L a x-y     ' (6) 



where y e (a, 6), do not exist in the classical sense, and are often referred to as singular 
integrals. 

Definition 2.1 Suppose that <p is a function [a.b] -> JR., y G (a,b), and the limit 

Ur-m^r «ELA (7) '■+o\Ja       x-y Jy+eX-y      J [l> 

exists and is finite.  Then we will denote the limit (7) by 

fb V(z)   , p.v. /    dx, (8) 
Ja  x-y y"> 

and refer to it as a principal value integral. 

Theorem 2.1 Suppose that the function <p : [a,b] -» H is continuously differentiable in a 
neighborhood of y 6 (a, 6).  Then the principal value integral (8) exists. 

2.2    Finite Part Integrals 

In this paper, we will be dealing with integrals of the form 

fb    <p(x)    J 

I Tz-y?d^ (9) 
where y € (a, 6), which are divergent in the classical sense. This type of integrals are often 
referred to as hypersingular or strongly singular. 

Definition 2.2 Suppose that tp is a function [a, 6] -»• R, y € (a, 6), and the limit 

lim(r
£-^£)   dx+f

b  JP^l_dx_^M) (10) 

exists and is finite.  Then we will denote the limit (10) by 

and refer to it as a finite part integral (see, for example, [9]). 

The following obvious theorem provides sufficient conditions for the existence of the 
finite part integral (10), and establishes a connection between finite part and principal 
value integrals. 

Theorem 2.2 Suppose that the function tp:[a,b]->1R. is twice continuously differentiable 
m a neighborhood of y E (a, ft).  Then the finite part integral (11) exists, and 

Lp- /   7 72 dx = — p.v. /   -t-L. 
Ja  {x-y)2 dy*     Ja x- ydx. (12) 



2.3    Legendre Polynomials and Legendre Expansions 

For any natural number n. the Legendre differential equation is 

,,       2\   d
2u     n      du 

(1-x)'^~2:E'^+n(n + 1)-u = 0- (13) 

One solution of the Legendre differential equation (13) is the Legendre polynomial Pn(x) : 
[_1! 1] -> H, defined by the three-term recursion formula 

P^) = ^r^'^)~'^,(x), (i4) 
with 

Po(x)   =   1, (15) 
pi(x)   =   x. (16) 

As is well-known, the Legendre polynomials have an explicit expression given by the formula 

^) = ^£r(*2-ir. (17) 
Furthermore, they are orthogonal with respect to the inner product 

(f,9) = J_f{x)g(x)dx. (18) 

Suppose that x1,x2,...,xN denote the zeros of the N-th Legendre polynomial PN : [-1,1] 
-> R. Then we will refer to the points x1,x2,...1xN on the interval [a.b], defined by the 
formula 

b-a a+b 
*z = — -Xi + —, (19) 

for all i = 1,2,..., N, as the iV Legendre nodes on [a, b]. 
For any sufficiently smooth function <p : [-1,1] -> R we will be denoting by an the n-th 

Legendre coefficient of ip, defined by the formula, 

2n + l   f1    t s 

°« = —2— /_  ^X> Pn ^ dx' (20) 
so that for all x € [-1,1] 

oo 

<f(x) = ^anPn(x). (21) 
n=0 

The series (21) is referred to as the Legendre expansion of tp. Given any natural number 
N, for computational purposes we will be approximating the Legendre expansion (21) by 
its truncated series of degree N -1 

N-l 

<p(x) «   Y^ anPn(x). (22) 
71=0 



The following lemma states that the truncated Legendre expansion of degree N - 1 (22) 
converges rapidly for sufficiently smooth functions, and is proved, for example, in [7]. 

Lemma 2.3 Suppose that <p : [-1,1] -> H is k times continuously differentiable and that 
E£=o an Pn(x) denotes its Legendre expansion.  Then, for any point x € [-1.1], 

^-ianPn(x)\l = 0(^±y (23) 

The following theorem relates the coefficients in a Legendre expansion to the coefficients 
in the Legendre expansion of its derivative and integral/respectively. Its proof follows from 
a combination of results in [21, 1, 7, 8]. 

Theorem 2.4  Given a natural number N, suppose that the polynomial p : [-1,1] -> TR is 
defined by the formula 

N-l 

p{x) = ]T anPn(x). (24) 
71=0 

Then, 
N-2 

p'{x)=  J2bnPn(x), (25) 
71=0 

with the coefficients bn given by the formula 

r A'4-n-3l 

bn bn = {2n + l)    J2    a2it+i-n,     n = Q,...,N-2, (26) 
k=n 

and with [Z±2=Z] denoting the integer part of^f^. Furthermore, 

rx N 

p(y)dy = J2cnpn(x), (27) 
1 71=0 

with the coefficients c„ given by the formulae 

co = E(-!r+1cn; 
71=1 

C^     - a"-l an+l 

(28) 

2(n-l) + l"2(^TlH:T'    " = 1.-^-2, (29) 
„ _      °JV-2 
"-1   ~    2(iV-2) + l' (30) 

_ Ojv-l 
CN   ~    2(N-l) + l- (31) 



Remark 2.5 It is well-know that t/y? : [-1,1] -> R is k times continuously differentiable 
and that 52%Loan Pn(x) denotes its Legendre expansion, then 

A'-2 

<p'(x)-  Y,bnPn(x) 
n-0 r°(i^ 

and 

f%(y)dy-£cnPn(x)\\ro(±) 

(32) 

(33) 

where the coefficients bn and Cn are defined by (26), (28) - (31), respectively. 

2.4    Legendre Functions of the Second Kind 

The Legendre polynomial Pn (see (17)) is a solution of the Legendre differential equation 
(13). The other solution is the Legendre function of the second kind Qn : (D \ [-1,1] -> (D, 
defined by the three-term recursion formula 

0  T)    _1_    1 

Qn+l(z) = TTT • Z ■ Qn{z) ~ T^-T • Qn-l(z) , n + 1 n + 1 

with 

Qo(z)    =    ^log(f^), 

QlW    =    f.tog(f±|)-l 

(34) 

(35) 

(36) 

Clearly, Q„(z) has a branch cut in the complex z-plane on the real axis from -1 to 1. In 
agreement with standard practice, on the branch cut we define Qn • [-1 ll -> R bv the 
formula ' 

Qn(x) = - lim (Qn{x + ih) + Qn(x-ih)). (37) 

The following theorem is known as Neumann's integral representation (see, for example, 
[8D- 

Theorem 2.6 Suppose that Pn : [-1,1] -» ]R denotes the n-th Legendre polynomial, and 
Qn ■ [-1,1] -» K. the n-th Legendre function of the second kind defined by formula (37). 
Then, for any point y € (—1.1) 

/•l p (x\ 
P-vJ_i-f^dx = 2Qn(y). (38) 

The following theorem follows immediately from Neumann's integral representation (38) 
and provides two formulae that will be subsequently used in this paper. 



Theorem 2.7 Suppose that Pn : [-1,1] -» R denotes *Ae n-*A Legendre polynomial and 
Pn : [-1,1] -» R z'is primitive function defined by the formula 

5n(x) = f*Pn(v)dy. (39) 

Furthermore, suppose that Qn : [-1,1] -> R denotes the n-th Legendre function of the 
second kind defined by (37).  Then, for any point y e (-1,1) 

y_i a ■ l0S ((2/ - *)2) ■ ^n(x) <te   =   log ((y - I)2) + p.v. jl ^1 dx ,        (40) 

r       f1     Pn(x)      , f1   P'(z)   , 1 (-1)" 
£p- /    7 «^   =   P-v- /    -Ji^-Ldx+ *—-!-.      (41) J-i{y-x)2 i-n-y J/-1      J/ + 1 l    j 

2.5    Chebyshev Systems 

Definition 2.3 A set of continuous functions tpi,...,<pN is referred to as a Chebyshev 
system on the interval [a. b] if the determinant 

( <P\{x\) V\{xN) 

(42) 
V <PN(XI)    ■■•    <PN(XN) 

is nonzero for any set of points xu...,xN such that a < xx < x2 < ... < xN < b. 

Definition 2.4  Given a set of real numbers xx <x2< ... <xN, suppose that mx, m2, ..., 
mN denotes the natural numbers defined by the formulae 

mi    =   0, 

{0, for j > 1 and Xj ^ Xj-X, 
;' - 1, for j > 1 and XJ = x^x = ... = xx, 
k, forj>k + l and Xj = Xj_x = ...= Xj_k / Xj.k_x 

(43) 

(44) 

A set of continuously differentiable functions <pu...,<pN is referred to as an extended Cheby- 
shev system on the interval [a, b] if the determinant 

f    drn\ 
dpM-VH1!- 

dmi 

iP^Wfl(xN)   \ dx 

d    1 /       \ r!mN , s 
(45) 

in which fa<pi{xj) = <pi{xj), is nonzero for any set of points xu...,xN such that a < xx < 
x2 < • ■ • < Xtf < b. 



Remark 2.8 Obviously, an extended Chebyshev system also forms a Chebyshev system. 
The additional constraint is that the points xux2,... ,xN at which the functions are evalu- 
ated may be identical. In that case, for each duplicated point, the first corresponding column 
contains the function values, the second column contains the first derivatives of the func- 
tions, the third column contains the second derivatives of the functions, and so forth. 

In the following examples several important cases of Chebyshev and extended Chebyshev 
systems are presented (additional examples can be found in [10]). 

Example 2.1  The monomials l,x,x2, ...,xn form an extended Chebyshev system on any 
interval [a,b] C (-00,00). 

Example 2.2  The exponentials e~x^ ,e~^\... ,e~^ form an extended Chebyshev sys- 
tem for any Xu A2,..., An > 0 on the interval [0,00). 

Example 2.3  The functions 1, cos(x), sin(s), cos(2x), sin(2x), ..., cos(nx), sin(nx) 
form a Chebyshev system on the interval [0,2 7r). 

2.6    Quadrature Formulae 

A quadrature rule on the interval [-1,1] is an expression of the form 

N 

lN(<p) = J2wn-<P(xn), (46) 
71=1 

where the points xn E [-1,1] and the coefficients wn £ SR are referred to as the nodes 
and the weights of the quadrature, respectively. The quadrature rule IN(<p) serves as an 
approximation to integrals of the form 

I((f) = /    w(x) -<p(x)dx, (47) 

where y> : [-1,1] -> R is a sufficiently smooth function and w : [-1.1] -> R is some fixed 
weight function. Since we will permit the function w to be strongly singular, the integral 
(47) has to be evaluated in the appropriate sense. In particular, for w(x) we will consider, 
inter alia, the singular functions 

- • log ((y - x)2) , (48) 

y^b' (49) 

where y 6 (-1,1). For the latter two functions, the integral (47) is interpreted as a principal 
value integral (see (7)) and finite part integral (see (10)), respectively. 



Definition 2.5 A quadrature formula (46) for the integral (47) is said to be of the degree 
M > 1, if it integrates all polynomials up to degree M exactly. 

Normally, the degree of a quadrature formula (46) can not exceed 2JV - 1 (see. for exam- 
ple, [20]). Quadrature rules (46) of degree 27V - 1 are commonly referred to as Gaussian 
quadrature rules. The following theorem is well-known and can be found in most elementary 
textbooks on numerical analysis (see, for example, [20]). 

Theorem 2.9 (Gaussian quadrature) Suppose that w(x) = 1 for all x E [-1,1]. Then 
there exists a unique quadrature rule (46) which has the degree 2N - 1. Furthermore, the 
nodes xY,x2, ...,xN are the zeros of the N-th Legendre polynomial PN(x) (see, (17)), and 
the weights wi,w2,...,wx are all positive and given by the formula 

wn=£u(B^)2<ix> n=1-2'-^- (5i) 
2.7    Generalized Gaussian Quadrature 

Numerical quadratures are normally constructed such that the quadrature rule (46) is ex- 
actly equal to the integral (47) for some set of functions. Classical TV-point Gaussian quadra- 
tures (see, Theorem 2.9) integrate polynomials of order 2N - 1 exactly. In [14], the notion 
of Gaussian quadrature was generalized as follows. 

Definition 2.6 Suppose that w : [-1,1] -^ B. is a non-negative integrable function. A 
quadrature rule (46) will be referred to as Gaussian with the respect to a set of2N functions 
<Pi, <P2, ■■■, <P2N ■ [-1,1] -> R and a weight function w, if it consists of N weights and 
nodes, and integrates the functions w o ^ on [-1,1] exactly for all i = 1,2,..., 27V. The 
weights and the nodes of a Gaussian quadrature will be referred to as Gaussian weights and 
nodes, respectively. 

The following theorem states that the Gaussian quadrature with respect to a set of functions 
<Pi,<P2,---,f2N exists and is unique if the set ipu tp2,..., tp2N forms a Chebyshev svstem 
(see Definition 2.3). It is proved (in a slightly different form) in [10. 13]. 

Theorem 2.10 Suppose that the functions <pl} <p2: ..., <^2A- : [-1,1] _> R form a cheby- 
shev system (see Definition 2.3) on the interval [-1,1], and that the weight function u- : 
[-1,1] -> B is non-negative and integrable. Then there exists a unique Gaussian quadrature 
with respect to the set <px, <p2, ..., <p2N and the weight function w. Furthermore, the weights 
of this quadrature are all positive. 

From Definition 2.6 it immediately follows that the Gaussian quadrature with respect 
to the functions <pu <p2, ..., <p2N : [-1, l] -> ]R and the weight function w : [-1,1] -> R is 



defined by the system of equations 

J2WWl{Xn) =      I     W(x) ■if1{x)dx, 
n=l ■'-1 
N x 

^wn-ip2{xn) =     I   w(x) ■ tp2(x) dx, 
n=l -'-I 

N : 

2J wn ■ <P2N(Xn)     =      /     w(x) ■ <p2N{x) dx . 
n=\ J-l 

N 

(52) 

We denote the left hand sides of these equations by /1; /2,..., f2N- each of the frs being 
a function [-1,1]" xR^Rof the nodes x1?x2)... ,*„ and weights w1,w2,... ,wN, 
respectively. Their partial derivatives are given by the formulae 

dfr 
d^   =   <*<*»>' (53) 

dx^     =     WnV>i(xn), (54) 

so that the Jacobian of the system (52) takes the form 

J(xi,.. .,XN,Wl,...,WN) = 

(   ¥>i(*i)     •••     tpi(xN)      wlip'l{xl)     ■■■     wNip\(xN)   \ 

'■■■■■ '■ ■■• ! •     (55) 
V  <P2N(xi)     ■•■     <P2N(XN)     Witff2N{xi)     ■■■     WNif'2N(xN)   I 

In practice, the system (52) is solved via Newtons method (see, for example, [5]). The 
following theorem states that when the functions to be integrated constitute an extended 
Chebyshev system, Newton's method for this system is always quadratically convergent 
provided the starting point for the iteration is within a sufficiently small neighborhood of 
the solution. A proof can be found in, for example, [5]. 

Theorem 2.11 Suppose that the functions <pi,<p2,...,<f>2N form an extended Chebyshev 
system (see Definition 2.4). Suppose further that the Gaussian quadrature nodes and weights 
for these functions are denoted by xux2,...,xN andwl,w2,...,wN, respectively. Then the 
determinant of the Jacobian matrix (55) is nonzero at the point (xu ...,xN,wi,.. .,wN), 

\J(xu...,xN,wi,...,wN)\^0. (56) 

Furthermore, the nodes xx, x2, •.., xN and the weights wx, w2,..., wN depend continuously 
on the weight function w. 

Remark 2.12 In order for Newton's method to converge, the starting point must be within 
a sufficiently small neighborhood of the solution. In [5] the continuation method (sometimes 
also referred to as the homotopy method) is used to generate such starting points. 

10 



2.8    Singular Value Decomposition of a Set of Functions 

The following theorem generalizes the standard singular value decomposition of a matrix 
to a set of functions. A proof can be found (in a more general form), for example, in [17]. 

Theorem 2.13 Suppose that the functions ipi, <p2, .... tpN : [a,b] -> R are square inte- 
grate. Then for some integer M there exist an orthonormal set of functions UI,U2,...,UM '■ 
[a, b] -» IR, an N xM matrix V = [vij] with orthonormal columns, and a set of real numbers 
si> S2 > ... > SM > 0, such that 

M 

vAx) = S«i(^)3,-t;y, (57) 
i=i 

for all x £ [a, b] and all n = 1,2,..., N. 

By analogy to the well-known singular value decomposition of matrices, we will refer to the 
factorization (57) as the singular value decomposition of the set of functions <pi, <p2. 
<PN, the functions Ui,u2, ...,uM as the singular functions, the columns of the matrix V as 
singular vectors, and the numbers si > s2 > ... > sM as the singular values, respectively. 

The following theorem from [5] states that the accuracy of a quadrature formula with 
positive weights for the functions <pi,<P2,---, <PN is determined by its accuracy for the sin- 
gular functions u;, corresponding to non-trivial singular values. 

Theorem 2.14 Suppose that under the conditions of Theorem 2.13 there exist a positive 
real number e and an integer 1 < M0 < M, such that 

M e2 

E    si<j- (58) 
i=M0+l 

Suppose further that the L-point quadrature rule with nodes x\, x2,...,xL and weights 
WI,W2,...,WL integrates the functions u» exactly on the interval [a, b], i.e. 

22 Wj ■ Ui{xj) = /   Ui(x) dx (59) 
j=i Ja 

for all i = l,2,..., M0, and that the weights wi,W2,...,wL are all positive. Then for each 
i = l,2,...,N, 

b 

<e-||Vt||2. (60) 
v^ fb 
^Wj-tpiixj) - /   (pi(x)dx 
■i—i Ja 
J'=l 

3    Analytical Apparatus 

The principal purpose of this paper is to construct quadrature formulae for functions / • 
[-1,1] -> IR of the form 

f(x) = <p{x) + rP(x) ■ log |*| + ^1 + 6M , 
x 

11 

X2   • (61) 



where v», 0,17,6 : [-1,1] -> R are smooth. In Section 3.1, we construct separate quadrature 
formulae for each of the functions of the form 

(62) 

in Section 3.2, we present a scheme were each quadrature it produces can be used simulta- 
neously for the efficient numerical integration of functions of the form (61). 

Obviously, integrals of the form 

/ (<p(x) + rfi(x) • log(|y -X\) + 1!ZL+    «(£)    ) dx J~1 v-x      v - x)2<> (63) 

with y outside the interval of integration [-1,1] and the functions v,^v,d smooth, can 
be evaluated with standard Gaussian quadrature formulae. However, when y is sufficiently 
close to the interval of integration [-1,1], the number of Gaussian nodes needed to achieve 
acceptable accuracy is often very high. Therefore, more specialized quadratures are desirable 
m this case; Section 3.3 is devoted to the design of generalized Gaussian quadratures for 
tnis environment. 

3.1    Quadrature Formulae for Individual Singularities log \x\, -, — 
z' x2 

The following theorem is one of principal analytical tools used in this paper. 

Theorem 3.1 Suppose that Xl,x2,...,xN and wuw2,...:wN denote the N nodes and 
weights of the Gaussian quadrature on the interval [-1,1], respectively (see, Theorem 2 9) 
Suppose further that P3(x) denotes the j-th Legendre polynomial (see, (17)), and that w(x) ■ 
Pj(x) is mtegrable on [-1,1] for all j = 0,1,..., N - 1.  Then the quadrature rule 

/•l N 

(x)-<p(x)dx*iJ2ün'<P(Xn) (64) 

with the weights wn defined by the formula 

n=l 

N-l 

W '» = w"- E (^2^ P^ ■ (£ WW PAX) <**)) (65) 

has the degree N — 1. 

Proof Suppose that <p : [-1,1] -, ]R is a polynomial of order N-l given by its Legendre 
series (21) so that 5 

N-l 

V(z) = £ aJ PJ(X) ■ (66) 
j=0 

12 



Substituting (66) into (47). we obtain 

JM = y_i *>(x) ■ <p(x) dx   =   J   w{x) -(j2ai pj(x)) dx 

■ j=o 

N-l 

=    Har([   w(x)Pj(x)dx). (67) 

The coefficients aj are given by (20).   Evaluating the integral (20) via TV-point Gaussian 
quadrature (see Theorem 2.9), we obtain the identity 

aj = 
2; 4-1 

n=l 

for all j = 0,1,..., N - 1. Finally, substituting (68) into (67) we obtain 

f1 N N~l /2 ' 4- 1 l 
j_w{x)^{x)dx     =      E^n)-Wn.^^^^Pj{Xn).^J ^w{x)pj{x)d^ym 

from which (64) and (65) immediately follow. D 

Remark 3.2 // the function <p is k times continuously differentiate, it immediately follows 
from the Cauchy-Schwartz inequality and (23) in Lemma 2.3 that 

fl N /  1   \ 
</_i W(X) ■ <p(x) dx-J2wn- <f(Xn)   = O \j^j 

N 

(70) 

The following theorem extends Theorem 3.1 to the case when the function w : [-1,1] -> R 
is defined by one of the formulae (48) - (50). The latter two functions are not integrable 
in the classical sense, and the integral (47) is interpreted as a principal value integral (see 
(7)) and finite part integral (see (10)), respectively. The theorem follows immediately from 
the combination of Theorems 2.4, 2.7, 3.1. 

Theorem 3.3 Suppose that xux2,...,xN and wuw2,...,wN denote the N nodes and 
weights of the Gaussian quadrature on the interval [-1,1] (see, Theorem 2.9). Suppose 
further that <p : [-1,1] -> JR. zs a sufficiently smooth function, and Pj(x), Q^x) denote 
the j-th Legendre polynomial and Legendre function of the second kind (see (17) (37)) 
respectively. Finally, suppose that the coefficients wltl,wlt2,..., whN, w2A,w2a,.. .', w2 N[ 
w3,i,wzt2,... ,w3<N, are defined by the formulae 

N-l 

Wl,n     =    U>n-'E(2j + l)-Pj(xn).Qj(y), (n) 

j=0 ; 

«*,n     =     Wn ■ ((p0(Xn) - Pl(Xn)) . ^ +  £   (Pj.fcn) - Pj+l(xn)) ■ Ä,-(y) 
3=1 

13 



+JV_2(xn) • RN^{y) + PN-riXn) ■ RN(y)) (72) 

m,n   =   !*;„•(-£     £   (2; + l)-(4^ + 3-2n).QJ(y).p2,+1_n(Xn) 
\       j=0     k=j 

7V-1 

i=o     ^ Vy-l     y + ly 
(73) 

foralln = l,2,...,N, with [^p] denoting fAe integer part of ^2zl, and the mappings 
Rj '■ (-lj 1) -> H defined by the formula 

Rj(y) = Qj(y) + \-iog((y-if). 
4 

TAen, /or any point y 6 (-1, l), the quadrature rules 

N 
J^dx* 

y 

(74) 

f1 <p(x)        SL 
P'V"7_i V^x~dx~^Wl>n'tp(xn)' (75) 

y n=l 

y_  2 • lo§ ((y - x)2) ■ V>(x) dx^Y, w^n ■ tp{xn), (76) 
n=l 

P" 7-1 fa - g)2 ^ ~ L ^3,n ■ ¥>(s„) , (77) 

Aaue £Ae degree N - 1, N - 2, and N - 1, respectively. 

3.2    Quadrature Formulae for Functions of the Form <p(x) + ip{x) ■ log Ixl 
, V(x)   [  0(s) 

X X2 

Theorem 3.3 provides a tool for the numerical integration of functions of the form 

^(x)-log|x|, (78) 
r](x) 
— > (79) 

0(x) 

X 

However, integrands are frequently encountered of the form 

2   ■ (80) 

/(*) = *(*)+tf M-tag |*|+ 2W + W 
x x2   ' <81) 

where the functions (p,i/>,T},e are known to be smooth but are not available individually. 
Specifically, in the numerical solution of scattering problems, one is frequently confronted 

14 



with the need to evaluate integrals of the form 

f.p. /    K(x,y) ■ a(x)dx = 

=   i.p.f\(KUx,y)+K2(x,y).log(\x-y\) + ^^ + ^^).a{x)dx,    (82) 
J-i\ y-x        (y-x)2J      K  J y    ' 

where a : [-1,1] -> IR and K1(x,y),K2(x,y),K3(x,y),K4(x,y) : [-1,1] x [-1,1] -> R are 
smooth functions, and y g (-1,1). Normally, the functions KUK2,K3, KA are not available 
separately, so that only the kernel K in toto can be evaluated. In such cases, a single 
quadrature rule integrating functions of the composite form (81) is clearly preferable. Even 
when each of the functions <p, ^, 77, 6 is available separately, the numerical implementation 
is simplified when a single quadrature formula can be used. 

Given a real number y € (-1,1), we denote by Vi, ^2,..., ipw the functions [-1,1] -> IR 
defined by the formulae 

' Pi-i(x), fort' = l,...,M, 
Pi-M-i(x) -log(|y-x|),   for * = M+ 1,...,2M, 

Mx) = {  Pi-2M-i{x)-T—r, for» = 2M+ 1,...,3M, 

Pi-3M-l{x) 

y — x 
1 

(83) 

(y - x)2 ' for i = 3M+ 1,...,4M. 

In a minor generalization of the standard terminology, we define the generalized moments 
mi(y), m2{y),..., m4M(y) by the formulae 

j_ Pi-i(x)dx, for i = 1,...,M, 

J_ Pi-M-i{x)-log{\y-x\)dx,   for i = M+ 1,... ,2M, 
= {     ~l jl P-2M-i{x) mi{y) 

K J-l 

y-x 
Pj-ZM-\{x) 

(y - x)2 

■ dx, 

dx, 

fori = 2Af+ 1,...,3M, 

for t = 3M + l,...,4M. 

(84) 

Now, suppose that xux2, ...,xN denotes the N Legendre nodes on [-1,1] (see (19)). 
Then we define the weights wu w2,..., wN of the quadrature formula 

/    /(*)<& «5>„-/(xn) 
J~1 n=l 

as the solution of the system of the 4M linear algebraic equations 

(85) 

N- 

^Wn-lpliXn)     =     171! (y), 
71=1 
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TV 

53 wn ■ ik(xn)   =   m2(y), (86) 
71 = 1 

N 

22wn-xp4M(xn)    =    miM(y). 
71=1 

Obviously, the matrix of the system (86) might be square, or it might be over- or under- 
determined, depending on the values of the parameters M, N. On the other hand, given 
a solution wl.w2.....wn of (86), we can be sure that the quadrature formula (85) will 
integrate exactly all functions / of the form (81), as long as the functions p, tf, v, 6 are 
polynomials of order not greater than M - 1. Due to Theorem A.6 in Appendix A be- 
low.Jor sufficiently large N, there always exist multiple solutions of (86), and a solution 
wi,W2,...,wn can be found such that 

A' N 

X>n<C-j>2, (g7) 
71=1 71=1 

where wu w2,..., wN are the weights of the iV-point Gaussian quadrature and C is a positive 
real constant. In practice, least squares are used to find w1; w2:..., wn satisfying the bound 
(87) (see Section 4 below). Denoting the N x AM matrix of system (86) by A and its 
right-hand side by b, we rewrite (86) in the form 

Aw = b. (88) 

3.3    Generalized Gaussian Quadrature Formulae for Functions of the Form 

<p{x)+iP(x)-\og\x\+1^-+d-^L 
X X2 

In Section 3.2 we described the quadrature formula (85) for integrals of the form (82) where 
the point of evaluation y is inside the interval of integration. While standard numerical 
quadratures (eg. Newton-Cotes or Gaussian quadratures) can be used for integrals of the 
form (82) when the point of evaluation y is outside and sufficiently far away from the interval 
of integration, more specialized quadratures are desirable when y is outside but close to the 
interval of integration. 

Given two positive real numbers d and R such that d < R, we will denote by DRd 

the set [-R,-l -d\\j[l + d,R] (see Figure 1). We define the functions ^i, i>2, ..', 
i>AM : [-1,1] x DR4 -> IR by the formulae 

' -Pi-i(z), for: = 1,...,M, 
Pi-M-i(x) ■ log{\y -x\),   for i = M + 1,..., 2M, 

1>i{x,y) = I  Pi-2M-i(x)-——, fort = 2Af + l,...,3Af, (89) 
y   x 

Pi-3M-i(x) ■——— ,      fort = 3Af + l,...,4M, 
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where Pj denotes the j-th Legendre polynomial (17). 
Now, suppose that Vl, y2, ...,yK are points in DR4. We will denote by r/0 : [-1.1] ->. R 

the 4 • K ■ M functions defined by the formula 

T]ij{x)=ipi{x,yj) (90) 

where i = 1,2...., 4 M and j = 1,2,..., K. Since it will be convenient to view the functions 
rjij as a finite sequence of functions [-1,1] -+ R, we introduce the notation 

k = A{j-l)M + i,- (91) 

so that 

i   =   k-4(j-l)M, (92) 

;'   =    JW + 1- (93) 
In a mild abuse of notation, we will use r)k and rjij interchangeably. 

Due to Theorem 2.13, there exist orthonormal functions uuu2,....uL : [-1,1] -> ]R a 
matrix F € R4 *-MxL with orthonormal columns, and real numbers Sl > s2 >■■'■> 5L >0 
for some integer L <4- K ■ M, such that 

%(^) =Su«'(a:)5»'ui* (94) 

for all k = 1.2....A-K-M. 

Remark 3.4 For an arbitrary positive real number e, we will denote by n(e) the number 
of coefficients Si in the decomposition (94) such that st > e. It turns out that for fixed d 
and R, n(e) is proportional to log(i), and is virtually independent of K. For a fixed e, 
n(e) is proportional to log(f), and is virtually independent ofK. The behavior of n(e) as 
a function e, d, R is investigated in detail in [22]. 

The following theorem is an immediate consequence of Theorems 2.11, 2.14. 

Theorem 3.5 Suppose that for a sufficiently large integer number K, yuy2,... yK are 
points in DR4 such that Vi ± Vj for all i ? j. Suppose further that the functions Vl, 
V2, ..., V4KM ■■ [-1,1] -> R, the real positive numbers 5l,s2,... ,sL, and the function's 
«I,U2,...,«L : [-1,1] -* R are defined by the formulae (90), (94), respectively. Given a 
positive real number t, we denote by L0 the smallest even integer such that 1 < L0 < L and 

L e2 

£   5^<T- (95) 
i-Lo + l 
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Then there exists a unique solution (wi,.. .w^x^.. ,ik) of the non-linear syst 
2 2 

ia 

2_,Wn-Ui{xn)      = /      Ui{x)dx, 
fl=l "'-l 

^u;n-u2(a:n)    = /    u2{x) dx, 
n=i ■'-i 

X^n-ULofan)    =     /    uLo(a;)dX) (96) 
n=l •'-1 

u/Aere a// u>„, n = 1, 2,..., ^, are .po«foi>e. Furthermore, for each k = 1,2,..., 4 • K ■ M, 
the -^-point quadrature rule 

£ t«n • T)k(xn) « I   nk{x) dx, (97) 
71=1 ■/_1 

has relative accuracy e; that is 

2 -1 

Y^Vn-Vk(xn)-       Vk{x)dx  <e-\\rik\\2. (gg) 
n=l •' —^ 

Remark 3.6 TTie solution of the system of non-linear equations (96) can be found by New- 
ton's method. For a detailed discussion of a Newton method for non-linear systems arising 
in the construction of generalized Gaussian quadratures, the reader is referred to [5J. 

4    Numerical Algorithm 

In Sections 3.1, 3.2 we have described quadratures rules for integrands of the form (78) 
- (81). While the numerical evaluation of the weights of the quadratures (75) - (77) in 
Section 3.1 via the formulae (72) - (73) is straightforward, the evaluation of the weights 
wi,w2, • • •, wN of the quadrature (85) is more involved; we summarize the computational 
procedure below. 

The input to the algorithm is a real number y e (-1,1), a natural number TV where TV is 
the number of Legendre nodes (19) on the interval [-1,1], and a natural number M where 
M - 1 is the degree of the quadrature rule. The algorithm will then compute quadrature 
weights wi,w2,...,wN, such that 

2^ wn ■ <p(xn) « /    w(x) ■ <p{x) dx , (99) 
n=l y-l 
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where </> : [-1,1] -» R is smooth and w : [-1.1] -> H is a linear combination of smooth 
functions and functions of the form (48) - (50). respectively. It consists of the following 
steps: 

1. Construct the TV-point Gaussian nodes xx,x2,....xN and weights wi,w2,...wN on 
the interval [-1,1] (see Theorem 2.9). 

2. Evaluate the Legendre polynomials P0,PU...,PM_! at the nodes xi,x2,...,xN via 
the three-term recursion (14). 

3. Evaluate all the functions rpu fa, ■ ■ ■, 4>AM (see (83)) at the nodes xux2,..., xN. 

4. Construct the moments m1(y);m2(y),... ,m4M(y) (see (84)) exactly, using Gaussian 
quadrature for mi, m2, ..., mM and quadrature rules (75) - (77) for mM+i(y), 
mM+2(y), •••, rri4M(y), respectively. 

5. Solve the linear algebraic system (88) in the least squares sense with any standard 
routine (available, for example, in LAPACK [2]). 

5    Numerical Examples 

FORTRAN codes have been written constructing the quadratures described in Sections 3.1, 
3.2, 3.3; in this section, their performance is illustrated with several numerical examples. 
In all examples below the quadrature nodes and weights are first computed in extended 
precision arithmetic (REAL *16) to assure full double precision accuracy. The quadrature 
rules are then used in double precision (REAL *8) to numerically integrate a number of 
functions with singularities log jx|, -, -% I    l 

X'   X1 

Example 5.1 In the first example, we use the quadrature rules (75) - (77) to evaluate 
integrals of the form (47) for each of the singularities (48) - (50) with the function tp : 
[-1,1] -> K. defined by the formula 

<p(x) = sin(2 x) + cos(3 x), (100) 

so that the actual functions to be integrated are of the form 

logflz - 2/|) • ( sin(2 x) + cos(3 x)) , (101) 

—- ■ (sin(2x) + cos(3xj) , (102) 

(y _ 3)2  ' ( Sill(2 X) + C0S(3 ZJ) ■ (103) 

We denote by yl,y2,... ,y14 the 14 Legendre nodes on the interval [-1,1] (see (19)). The 
integrals of (101) - (103) were evaluated at yi,y2,... ,y14, and the relative errors in the I2 
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norm were obtained via the formula 

Eltl = 
>/Ziimvi)>' (104) 

where Eabs(yi) and I(<p)(yi) denote the absolute error and the exact integral (47) evalu- 
ated at the point y{, respectively. The integrals I(<p)(yi) were computed analytically using 
MATHEMATICA. y       S 

In Figure 2, the relative errors of the integrals of (101) - (103) are presented for TV = 
6,8,..., 26. For comparison, the relative errors of the TV-point Gaussian rules (see Theorem 
2.9) with TV = 6,8...., 26 applied to the function (100) are shown as well. 

Remark 5.1 The weights (see (72) - (73)) of the quadrature rules (75) - (77) used in 
Example 5.1 above, depend upon the point of evaluation y. Therefore, for the evaluation 
of each of the integrals (101) - (103) at each of the points yuy2,... ,yu, a different set 
of quadrature weights is used. As an example, in Table 1 we list the quadrature nodes 
xn and weights whn, w2,n, W3,n of the 14-node version of the quadratures (75) - (77) 
for the integration of functions with singularities logflx - y^),  -L-    i—j.   wuh y,  = 
-0.9862838086968123 (the smallest of the U Legendre nodes on {-l*!}^ ' 

Example 5.2 In this example, we compute the same integrals as in Example 5.1. However 
this time we use the quadrature rule (85) that integrates functions of the combined form 
(81). Specifically, the quadrature weights were constructed via the numerical algorithm 
described in Section 4 for integrands of the form 

M 

£ (a, + bi ■ log(|yfc - si) + -2- +       *      ) . P._l{x) (105) 

for each Legendre node yk, * = 1,2,... ,14, on the interval [-1,1] (see (19)).    In our 
computations, we chose the number of weights TV equal to 6M. 

In Figure 3 the relative errors (see (104)) are presented for TV = 36,48,..., 144. 

Example 5.3 In this example, we use the generalized Gaussian quadrature described in 
Section 3.3 to integrate the functions (101) - (103) where y is a point outside but close to 
the interval [-1,1]. Specifically, 36 and 42-node versions of the quadrature formula (97) 
were constructed for integrands of the form 

M 

E («i + ^ ■ log(|y - x|) + ^- + j-iL_) . Pl_lix), (106) 
1=1 

where y E [-10, -1.0016] U [1.0016,10]. The 36 and 42-node versions were constructed with 
M - 11 and M = 21, respectively. In order to test the accuracy of the resulting quadra- 
tures, the integrals (101) - (103) were evaluated at 202 equispaced points yil y2,..., y202 g 
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[-2.002, -1.002] U [1.002,2.002], defined by the formula 

= | -2.002 + 0.01 ■ (k - 1),    for k = 1 101, 
Vk     \ 1.002 + 0.01 -{k -102),   for A =102,..., 202. (107) 

In Table 2, the relative errors (see (104)) of the TV-point generalized Gaussian quadra- 
tures with N = 36,42 applied to the the functions (100), (101) - (103) are presented. 
For comparison, the relative errors of the JV-point Gaussian rules (see Theorem 2.9) with 
N = 36,42,100,150,... , 300 applied to the same functions are shown in Table 3. In Tables 
4, 5 we list the quadrature nodes xn and weights wn of the 36 and 42-node versions of the 
quadrature (97). 

Example 5.4 In this example, we use a compound quadrature formula based on the combi- 
nation of the singular quadrature (85), generalized Gaussian quadrature (97), and Gaussian 
quadrature (see Theorem 2.9) to evaluate the integral 

i (l + loS(ly - x\) + —— +     _      ) • (sin(200z) + cos(300^)) dx . (108) 

at several points y e (-1,1). Specifically, we subdivide the interval of integration [-1.1] 
into K subintervals I\,..., 1^ where 

/,=i-i+!.(i-i),-i+! (1091 

for all t - 1,2,...,if, and then apply a specific quadrature rule on each subinterval to 
evaluate (108). The quadrature rule used on subinterval I; is determined by one of the 
following criteria: 

• if y € I*, then the combined singular quadrature rule (85) is used; 
• if y ^ It and y € Ij_i U I+i, then generalized Gaussian quadrature (97) is used: 
• if y 0 It and y 0 /»_! U Ii+i, then Gaussian quadrature (see Theorem 2.9) is used. 

We denote by 

fl»!/2>--->VM (110) 

the M Legendre nodes (see (19)) on subinterval /,-. Furthermore, we denote by yu y2  
yMK the set of all points (110) from all subintervals I, i = 1,2,..., K. In other words. 

y) = VM{i-i)+j , (111) 

where i = 1,2,... ,K and j = 1,... ,M. Obviously, by evaluating the integral (108) at 
the points yi,y2,... ,yMK via the procedure described above, we obtain approximations 
to F(j/i), F(y2),..., F{yMK). We perform the calculations with M = 4,6,10,12,16 and 
K = 2,4,8,.... ,8192; and in order to compare the accuracy for two different choices of 
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K, we interpolate the obtained values with an M order interpolation scheme to the 100 
equispaced points h,t2,...,two on the interval (-1,1) defined by the formula 

ti=z-1 + wi-^ (112) 
for alii = 1,..., 100. 

In Table 6, the relative errors (see (104)) of the scheme described above of degrees 
M = 4,6,10,12,16 and the number of subintervals K = 2,4,8,... ,8192, applied to the 
integral (108) are presented. 

The following observations can be made from the examples of this section, and from the 
more detailed numerical experiments performed by the authors. 

1. The quadrature formulae (85), (97) are not convergent in the classical sense; they are 
only convergent to a prescribed precision e. Needless to say, the two are indistinguish- 
able, as long as the prescribed precision is less than machine precision. 

2. The schemes producing the quadrature formulae (75) - (77), (97) do not lose many 
digits compared to machine precision; constructing the quadratures in double precision 
arithmetic results in 11 - 12 correct digits; constructing them in extended precision 
arithmetic results in full double precision accuracy. Needless to say, the nodes and 
weights of the quadrature formulae (75) - (77), (97) can be (and have been) precom- 
puted and stored, so that the need for extended precision during the construction of 
the quadrature is not a serious limitation. 

3. The quadrature formula (85) experiences some loss of precision, not only during the 
precomputation of the nodes and weights, but also when the formula is applied to 
specific functions of the form (81). A fairly detailed investigation has led us to the 
conclusion that the loss of precision is associated with the evaluation of the "hypersin- 
gular" function (80), and is unavoidable; the phenomenon is very similar to the loss 
of precision associated with numerical differentiation, both in character and severity. 

4. When the quadrature formulae of this paper are applied to oscillatory functions (of 
the form (108), or similar), they achieve their full precision at 10-15 nodes per 
wavelength (for the formulae (75) - (77), (97)), and 20-45 nodes per wavelength (for 
the formula (85)), respectively. 

6    Generalizations and Conclusions 

A set of quadratures has been constructed for functions / : [-1,1] -> R of the form 

f(x) = V(X) + *{x) • log \x\ + 2^) + W , (n3) 
X* 
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where <p,iß,r],e : [-1,1] -> R are smooth functions. The term "quadratures" in this 
case is somewhat of a misnomer, as functions of the form (113) are not integrable in the 
classical sense, and their integrals are to be interpreted in the appropriate "finite part" 
sense. One of anticipated applications for such quadratures is the evaluation of integro- 
pseudo-differential operators (eg. Hilbert transform and derivative of Hilbert transform) 
arising from the solution of integral equations of potential theory in two dimensions (see. 
for example, [11, 12]). 

The work presented here admits several straightforward extensions: 

1. The quadratures in this paper can easily be modified for functions with singularities 
other than log|z|, I, £. For example, using Chebyshev polynomials, quadrature 
formulae similar to (75) - (77), (85) for functions with singularities of the form 

log 1^1 

WTTF' (115) 

i 
x2v/n^' (116) 

etc. are easily constructed. 

2. A straightforward generalization of the quadratures of this paper in two dimensions 
leads to quadrature formulae on the square, integrating functions f • 1-1 11 x f-1 1] -> 
R of the form l     '  J    L     '  J 

where <p,^,v,9 : [-1,1] x [-1,1] -> ]R are smooth functions. Quadrature formulae of 
this type have been constructed, and the paper reporting them is in preparation. 

A    Existence of Quadrature Formulae for Functions of the 

Form tp(x) + ^{x) -log|*| +2^ + *to 
X x2 

In Section 3.2, we numerically construct quadrature formulae on the interval [-1 1] for 
functions of the form ' 

f(x) = <p(x) + tf(x) • log \x\ + ^ + °M . (118) 

The nodes of the quadratures we construct are Gaussian nodes xux2,... ,xN with a suffi- 
ciently large N, and their weights are determined via a least squares procedure. The purpose 
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of this Appendix is to prove that the least squares process of Section 3.2 can be used to 
obtain quadratures of arbitrary accuracy. We do so by constructing a procedure that, given 
a real e > 0 and a sufficiently large integer N, produces a set of weights wuw2,...,wN such 
that, in combination with the Gaussian nodes xux2, ...,xN evaluates the integral (82) to 
precision e. 

Remark A.l The procedure of this Appendix is quite inefficient, in the sense that it re- 
quires a very large number of nodes to obtain acceptable levels of accuracy; its purpose is to 
prove that such quadratures exist. The procedure for the actual evaluation of coefficients is 
described in Section 3.2, and results in schemes whose precision is satisfactory at moderate 
values of N (see Section 5). 

The following lemma follows immediately from the definition of the integral, and the fact 
that a logarithmic singularity is integrable. 

Lemma A.2 Suppose that j > 0 is an integer number, and that P3 denotes the j-th Leg- 
endre polynomial (see (17)). Then for any positive real number e, there exists an integer 
NQ > 1 such that for any N > N0 

/•l Ar 

y_   Pj(x) ■ log \x\ dx-  J^Wi- Pj(xi) ■ log \Xi\ <e, (119) 

with xi,x2, ...,xN andWl,w2,...,wN the nodes and the weights of the N-point Gaussian 
quadrature (see Theorem 2.9). 

The following lemma is an immediate consequence of Lemma A.2. 

Lemma A.3 Suppose that Pj denotes the j-th Legendre polynomial (see (17)). Then for 
any positive real number e and integer M>0, there exists an integer N0 > 1 such that for 
any N > N0 and each j = 0,1,..., M 

r\ A' 
/      Pj{x)dx-   Y,Wi-Pj(Xi 

J—i .■_, 
<€. (120) 

and 

l-\ 
Pj{x) ■ log \x\ dx- Y/wl- Pj(Xi) ■ log \xi\ <e, (121) 

with xi, x2,..., xN and wx,w2,..., wN the nodes and the weights of the N-point Gaussian 
quadrature (see Theorem 2.9). Furthermore, for any function F : [-1,1] -». ]R 0f the form 

M 
FW = E{*j + bj-log\x\)-Pj(x), 

j=0 
(122) 
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with Qj, bj arbitrary real coefficients, 

M 

^ '' "  "N (123) y_i F(x) dx-J2 «* ■ F(Xi)  < e   £ (\*j\ + N) • 
j=0 

The following lemma provides a formula for the evaluation of the integrals of functions 
that are linear combinations of polynomials, and polynomials composed with the singular 
function -4. 

Lemma A.4 Suppose that n>l is an integer number, and that the function F : [-1.1] -> 
IR w defined by the formula 

F(x) = Pn(x) + ^, (124) 

with Pn, Sn : [-1,1] -> fft arbitrary polynomials of degree n. Furthermore, suppose that the 
function /:[-l,l]->E« de/ined 6y tte formula 

f(x)=x2-F(x). (125) 

TÄen 

f.p. / F(,) dz = ± Wi • (V) _ £0)) _ 2 /(0), (126) 
=1 

xi5£0 

w/iere u>i, u>2, •. •, wn and xi, x2,. •., xn are the weights and nodes of the n-point Gaussian 
quadrature, respectively (see Theorem 2.9). 

Proof Defining the function G : [-1,1] -+ R by the formula 

ail) = F{l)-m_im, (m) 

we observe that G is a polynomial of order n, and therefore 

Now, observing that 
n 

Ez7 = 0> (129) 
x^O 

(due to the symmetry of the Gaussian nodes and weights about zero), and substituting 
(129) into (128), we have 6 

f'iG(x)dx=±Wi.^(xi)-Wy (130) 
xt^Q 
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It immediately follows from (10) that 

f.p. f1 /(0)+/'(0)-* 
7-1        x2 dx = -2f{0), 

and, combining (127), (130), (131), we obtain 

J-i J-\ J-\ X2 

=    ±Wl.(F(xl)-m-2f(0). 
i=l \ xi    / 

(131) 

(132) 

(133) 
1,5*0 

Lemma A.5 Suppose that F : [-1,1] -> R and f : [-1,1] -> R are too /unions denned 
6y (^j and (igj;, respectively. Then there exists a positive real Cx such that for any 
sufficiently small h, 

f(0)-(F(h)+F(-h))-^<Cl-h\ (134) 

Furthermore, for any real 7 0 {-1,0,1}, there exists a positive real number C2 such that 
for any sufficiently small h, 

/(0) - (F(A) + F(-h) - F(7h) - F(-jh)) ■ 
.2 . u2 j2-h 

2(72-l) 
< C2 ■ h4 (135) 

Proof.  We start with observing that for any F : [-1,1] -> R defined by (124), there 
exist such real numbers a_2, a_1; a0,ai,...,an that 

F(x) = —5- + + a0 + 01 a: + ... + an xn , 

and due to (125), 

a-2 = /(0). 

It immediately follows from (136) that for small h, 

F(h)    = . jj- + ^ + a0 + ai /i + a2 A
2 + 0(/J

3
) , 

^(-^)    =    ^T" ^i + ao-ai/i + a2/i2 + 0(/i3). 

Adding (138) to (139), we obtain 

F(h) + F(-h) = i^i-LO«- ^0.. A2  , ,->,,. 4 > 
/i2 + 2a0 + 2a2/i2 + C>(/i4), 

(136) 

(137) 

(138) 

(139) 

(140) 

and (134) immediately follows from the combination of (137) and (140). 
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In order to prove (135), we replace h with 7 • h in (140) above, obtaining 

F{7 h) + F{-j h) = -^§ + 2 Co + 2 a2 72 /i2 + 0(/i4). (141) 

Subtracting (141) from (140), we have 

F(h) + F(-h) - (F(7 h) + F(-7A)) = ^-^"^ + 2 02 Ä2(l - 7
2) + 0(/i4),   (142) 

and (135) immediately follows from the combination of (137) and (142). D 
The following theorem now immediately follows from the combination of Lemmas A 3 

- A.5. 

Theorem A.6 Suppose that Pj denotes the j-th Legendre polynomial (see (17)). Then 
for any positive real number e and integer M > 0, there exists an integer NQ > 1, real 
coefficients w1:w2,... ,wN, and a positive constant C such that for any N > N0 and each 
j = 0,1,...,M 

TV ,1 N 

/      Pj(X)dx-   J^Wi-Pjixi) 

rl N 

/    Pj(x) • log |x| dx-Y,<»i- Pj(Xi) ■ log \Xi\ 

r1 Pj(x)     * PAx. jy-t'i) 

i=l 

<e, 

<e 

(143) 

(144) 

(145) 

and 
N N 

2>,?<c-j>?, (146) 
t=l i=l 

with xi, x2,..., xN and wx, w2,..., wjv *Ae nodes and iÄe weights of the N-point Gaussian 
quadrature (see Theorem 2.9). Furthermore, for any function F : [-1,1] -> R of the form 

M 

n*) = £ (aJ + *i • log M + §) • Pj(x), (147) 
3=0 

with aj, bj, Cj arbitrary real coefficients, 

rl N 

J   F(x) dx-J2<Si- F(xi)  < e  £ (\aj\ + |bj| + |Cj|) 
xiftO 

(148) 
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-.9862838086968123E+00 
-.9284348836635735E+00 
-.8272013150697650E+00 
-.6872929048116855E+00 
-.5152486363581541E+00 
-.3191123689278897E+00 
-.1080549487073437E+00 
0.1080549487073437E+00 
0.3191123689278897E+00 
0.5152486363581541E+00 
0.6872929048116855E+00 
0.8272013150697650E+00 
0.9284348836635735E+00 
0.9862838086968123E+00 

U>l,n 

0.6158759029892887E+00 
-.3449922634155065E+01 
0.6341017949494823E+00 
-.1619416300699971E+01 
0.4959237125495822E+00 
-.1038139679411058E+01 
0.3511876142040904E+00 
-.6752486832724772E+00 
0.2161950693504096E+00 
-.4027047889340547E+00 
0.1014500308386035E+00 
-.1896412777930365E+00 
0.2050334687326519E-01 
-.3560786461470516E-01 

W2.n 

-.1749507584908717E+00 
-.24398325234 77966E+00 
-.2035606965679834E+00 
-.2159934769461259E+00 
-.1075251867819710E+00 
-.1196358314284132E+00 
0.1088206509124769E-01 
-.1913486054919796E-01 
0.9038214134065220E-01 
0.4482568706166883E-01 

0.1047670461892695E+00 
0.5616254115094882E-01 
0.6074345322744063E-01 
0.2130791084865406E-01 

»3.i 

-.1130556007318105E+03 
0.2343635742304627E+02 
0.2052970256686051E+02 
-.1376240462154258E+02 
0.1455155616946274E+02 
-.1125576720477356E+02 
0.1005717417020061E+02 
-.7774959517403008E+01 
0.6382331406035814E+01 
-.4626948764626759E+01 
0.3365725647246004E+01 
-.2045992407816295E+01 
0.1083005671766590E+01 
-.2941688960408355E+00 

Table 1: 14-node quadratures of the form (75) - (77) for y = -0.9862838086968123 
(see Example 5.1 and Remark 5.1). 

N 
36 
42 

1 
0.560E-12 
0.257E-15 

(y-x) 
0.250E-13 
0.119E-14 

log(|i-y[) 
0.420E-13 
0.225E-15 

(y-x) 
0.885E-15 
0.147E-13 

Table 2: Relative errors of the quadrature formula (97) applied to the integrands 
(100), (101) - (103) (see Example 5.3). 

N 1 (y-x)-1 log(|i - y\) (y-x)-2 

36 0.114E-14 0.581E-02 0.108E-04 0.121E+00 
42 0.700E-15 0.277&02 0.427E-05 0.680E-01 
100 0.775E-15 0.192E-05 0.112E-08 0.114E-03 
150 0.333E-15 0.350E-08 0.133E-11 0.310E-06 
200 0.196E-14 0.631E-11 0.188E-14 0.746E-09 
250 0.262E-14 0.106E-13 0.551E-15 0.167E-11 
300 0.269E-14 0.967E-15 0.568E-15 0.525E-14 

Table 3:   Relative errors of the standard Gaussian quadrature (see Theorem 2 9) 
applied to the integrands (100), (101) - (103) (see Example 5.3). 
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±z„ 
0.1065589476527457E+00 
0.3113548847160309E+00 
0.4932817445063880E+00 
0.6431876254991823E+00 
0.7584402200373317E+00 
0.8418072582807350E+00 
0.8991123360358894E+00 
0.9369451420922662E+00 
0.9611808158857813E+00 
0.9763813583671749E+00 
0.9857845370872045E+00 
0.9915537349540954E+00 
0.9950772406715330E+00 
0.9972224562334544E+00 
0.9985216206191467E+00 
0.9992964931862838E+00 
0.9997376213125204E+00 
0.9999525789657767E+00 

■Wn 

0.2116935969670785E+00 
0.1954154182193890E+00 
0.1668941295018453E+00 
0.1325004013421312E+00 
0.9850855499442945E-01 
0.6923612105413195E-01 
0.4649700037042145E-01 
0.3015693021568984E-01 
0.1907410671190122E-01 
0.1186194584542522E-01 
0.7299783922072470E-02 
0.4465717196444791E-02 
0.2722792056317777E-02 
0.1654307961017307E-02 
0.9963611678876147E-03 
0.5843631686022078E-03 
0.3153728101867406E-03 
0.1230964950065995E-03 

Table 4:   36-node generalized Gaussian quadrature (97) for functions of the form 
(106) with M = 11, and precision 10-15 (see Example 5.3). 

±Xr. 

0.7824400816570354E-01 
0.2317400514932991E+00 
0.3765817141635966E+00 
0.5080234535636137E+00 
0.6226938088738944E+00 
0.7188418253624399E+00 
0.7963343649196293E+00 
0.8564163016327517E+00 
0.9013001486524265E+00 
0.9336896680922276E+00 
0.9563457975135937E+00 
0.9717714213532305E+00 
0.9820411592483684E+00 
0.9887573995032291E+00 
0.9930900683346067E+00 
0.9958561171201172E+00 
0.9976063686147585E+00 
0.9987019026654443E+00 
0.9993734804740140E+00 
0.9997640500479557E+00 
0.9999571252163234E+00 

0.1559838796617961E+00 
0.1500543303602524E+00 
0.1388302709124357E+00 
0.1234870921831402E+00 
0.1055618635285824E+00 
0.8671614170628514E-01 
0.6848351985661966E-01 
0.5205731921370713E-01 
0.3816842653276627E-01 
0.2707608184111357E-01 
0.1865610690150748E-01 
0.1254153267525754E-01 
0.8264234965377917E-02 
0.5361830655763248E-02 
0.3438177342595994E-02 
0.2184437514815405E-02 
0.1375256690097983E-02 
0.8535706349265051E-03 
0.5129451502696074E-03 
0.2818251084208615E-03 
0.1111565642688685E-03 

Table 5:  42-node generalized Gaussian quadrature (97) for functions of the form 
(106) with M = 21, and precision 10"15 (see Example 5.3). 

29 



-R 

>R,d 

-l-d     -1 l    i + d 

Figure 1: The set DRd. 

R 

I 
u > 

Ü 

1 -3- 
l/(x-y) -^- 

log(|x-y|) -0-- 
l/(x-y)A2 ■•0-- 

-. ~-:o-.. 

14       16        18 
Number of nodes 

20 
i 

22 24 26 

Figure 2: Relative errors of the quadrature formulae (75) - (77) with N = 6 8 26 
applied to the integrands (101) - (103) (see Example 5.1). The relative error of the 
iV-pomt Gaussian quadratures with N = 6,8,..., 26 applied to the function (100) 
are presented for comparison. 
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Figure 3: Relative errors of the quadrature formula (85) with M = 6,8,..., 24 and 
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K degree 4 degree 6 degree 10 degree 12 degree 16 
2 0.976E+00 0.105E+01 0.904E+01 0.372E+01 0.799E+01 
4 0.109E+01 0.178E+01 0.998E+01 0.622E+01 0.325E+01 
8 0.157E+01 0.226E+01 0.429E+01 0.239E+01 0.188E+01 

16 0.215E+01 0.149E+01 0.212E+01 0.103E+01 0.788E+00 
32 0.131E+01 0.103E+01 0.219E+00 0.483E-01 0.184E-02 
64 0.556E+00 0.115E+00 0.194E-02 0.166E-02 0.368E-03 
128 0.614E-01 0.285E-02 0.115E-05 0.126E-07 0.364E-09 
256 0.442E-02 0.498E-04 0.133E-08 0.270E-09 0.693E-09 
512 0.280E-03 0.778E-06 0.837E-09 0.476E-08 0.384E-08 

1024 0.165E-04 0.125E-07 0.150E-08 0.149E-07 0.147E-07 
2048 0.102E-05 0.271E-08 0.171E-07 0.293E-07 0.532E-07 
4096 0.635E-07 0.231E-07 0.613E-07 0.921E-07 0.128E-06 
8192 0.110E-07 0.113E-06 0.300E-06 0.134E-05 0.705E-06 

Table 6: Relative errors of the compound quadrature formula of degrees M = 
4.6,10,12,16 and the number of subintervals K = 2.4,...,8192 applied to the 
integral (108) (see Example 5.4). 
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Whenever physical signals are measured or generated, the locations of receivers or trans- 
ducers have to be selected. Most of the time, this appears to be done on an ad hoc basis. 
For example, when a string of geophones is used in the measurements of seismic data in 
oil exploration, the receivers are located at equispaced points on an interval. When phased 
array antennae are constructed, their shapes are determined by certain aperture consid- 
erations: round and rectangular shapes are common. When antenna beams are steered 
electronically, it is done by changing the phases (and sometimes, the amplitudes) of the 
transducers. Again, these transducers are located in a region of predetermined geometry, 
and their actual locations within that geometry are chosen via some heuristic procedure. 
In all these (and many other) cases, the signals being received or generated are band-limited. 
Optimal representation of such signals has been studied in detail by Slepian et. al. more 
than 30 years ago. and some of the obtained results were applied by D. Rhodes to the 
design of antenna patterns; further development of this line of research appears to have 
been hindered by the absence at the time of necessary numerical tools. We combine these 
classical results with the recently developed apparatus of Generalized Gaussian Quadratures 
to construct optimal nodes for the measurement and generation of band-limited signals. In 
this report, we describe the procedure based on these techniques for the design of such 
receiver (and transducer) configurations in a variety of environments. 
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1    Introduction 

When measurements are performed, it often happens that the signal to be measured is 

well approximated by linear combinations of oscillatory exponentials, i.e. functions of 

the form 

n 

in one dimension, of the form 

£Qj..e«--(V~/y»> (2) 

j=\ 

in two dimensions, and of the form 

n 

in three dimensions. In most cases, the signal is band-limited, i.e. there exist such real 

positive a that all 1 < j < n. 

l-\/i<0 (4) 

in one dimension. 

\2   ,      2^2 XJ ^ h ^ ° (5) 

in two dimensions, and 

X) + ß) + u2<a\ (6) 

in three dimensions. 

As is well-known, most measurements of electromagnetic and acoustic data (espe- 

cially at reasonably high frequencies) are of this form. Examples of such situations 

include geophone and hydrophone strings in geophysics, phased array antennae in radar 



systems, multiple transceivers in ultrasound imaging, and a number of other applications 

in astrophysics, medical imaging, non-destructive testing, etc. 

In this report, we describe a procedure for determining the optimal distribution of 

sources and receivers that maximizes accuracy and resolution in measuring band-limited 

data given a fixed number of receivers. Alternatively, the procedure can be used to 

determine the optimal distribution of receivers that will minimize their number given 

specified accuracy and resolution. While the techniques described in this note are fairly 

general, we describe them in detail in the case of linear antenna arrays: the changes 

needed to generalize the approach to other cases are summarized in Section C. 

Remark 1.1 One of principal issues in the design of antenna arrays is the treatment 

(or avoidance) of the so-called supergain (or superdircctivity). Supergain is the con- 

dition that occurs when an antenna design is attempted that is prohibited (or nearly 

prohibited) by the Heisenberg principle: technically, it occurs in the form of very closclv 

spaced elements operating out of phaze. and leads to prohibitive Ohmic losses in trans- 

mitting antennae, loss of sensitivity in receiving ones. etc. Since the purpose of this 

note is to introduce techniques for selecting the locations of elements for a prescribed 

aiifi mia [Hütern, we avoid the issue of choosing the antenna pattern altogether. Instead, 

we observe design optimal element distributions for several standard far-field patterns 

(see Section 5.1), and we observe that the scheme for choosing optimal distributions of 

elements is virtually independent of the patterns being approximated. 

Technically, the approach taken here is to observe that designing an antenna array 

can be viewed as constructing a quadrature formula for the integration of certain special 

classes of functions. Using recently developed techniques for the construction of so-called 

Generalized Gaussian Quadratures, we obtain both nodes and weights that are optimal 

(in a very strong sense) for the required antenna pattern. 

The structure of this note is as follows. In Section 2, we summarize some of the math- 

ematical apparatus to be used: Chebychev Systems, Generalized Gaussian Quadratures, 



etc. In Section 3. we recapitulate some of the standard antenna theory, primarily to 

introduce the necessary notation. In Section 4, element distributions given a specific an- 

tenna pattern. In Section 5. we illustrate our approach with several numerical examples, 

and Section 6 contains a discussion of the generality of the schemes presented. 

2    Analytical Preliminaries 

In this section, we summarize several known facts about classical Special functions. All 

of these facts can be found in the literature: detailed references are given in the text. 

2.1     Chebyshev systems 

Definition 2.1  .4 sequence of functions O1.....0,, will be referred to as a Chebyshev 

system on the interval [a.b] if each of them is continuous and the determinant 

PiU'i)    •■•    Pi(a-„) 

I o„(.ri)    •■•    pn(x„) 

is nonzero for any sequence of points .r1; .. ...rn such that a < xx < x2 ■ ■ ■ < xn < b. 

An alternate definition of a Chebyshev system is that any linear combination of the 

functions with nonzero coefficients must have no more than n zeros. 

Examples of Chebyshev and extended Chebyshev systems include the following (ad- 

ditional examples can be found in 

Example 2.1  The powers l,x,x2,... ,xn form an extended Chebyshev system on the 

interval ( —oc. 00). 

Example 2.2  The exponentials e~XiX, e~^-x,..., e~Kx form an extended Chebyshev sys- 

tem for any Xu ..., An > 0 on the interval [0. oc). 

Example 2.3  The functions 1, cos x, sin x, cos 2x, sin 2z,..., cos nx, sin nx form a Cheby- 

shev system on the interval [0, 2TT]. 



Example 2.4 Suppose that c > 0 is a real number, w is a positive function [-1.1] -4 R 

such that w e cl[-l, 1] and w{-x) = iv{x) for all x G [-1,1], n is a natural number, 

and the operators P. Q : L2[-\, 1] -> L2[-l, 1] are de/med 6j/ Me formulae 

P(o){x) = f w{t) ■ eicxt ■ o(t) dt (S) 

(? = P' o P. (9) 

Suppose farther that Oi.o2.... are Me eigenfunctions of Q. A1;A2.... a/'e Me cor/-e- 

sponding eigenvalues, and X{ > A2 > A3.... 7/ie/z o// eigenfunctions of Q (also known 

as the right singular vectors of P) can be chosen to be real. Furthermore, the functions 

öi. o-2 .on constitute a Chebychev system on the interval [-1,1]. 

2.2     Generalized Gaussian quadratures 

A quadrature rule is an expression of the form 
n 

J2U'J-°(XJ)- (io) 

where the points Xj e R and coefficients «■_, G R are referred to as the nodes and weights 

of the quadrature, respectively. They serve as approximations to integrals of the form 

/   o{x) ■^■{.v)(lx (H) 

with „■ is an integrable non-negative function. 

Quadratures are typically chosen so that the quadrature (10) is equal to the desired 

integral (11) for some set of functions, commonly polynomials of some fixed order. Of 

these, the classical Gaussian quadrature rules consist of n nodes and integrate polynomi- 

als of order 2/? - 1 exactly. In [13]. the notion of a Gaussian quadrature was generalized 

as follows: 

Definition 2.2 .4 quadrature formula will be referred to as Gaussian with respect to a 

set of 2n functions 6X,..., 62n : [a, 6] -> R and a weight function u : [a, b] -> R+, if it 

consists of n weights and nodes, and integrates the functions 6{ exactly with the weight 

function >x for all i = 1.... ,2n. The weights and nodes of a Gaussian quadrature will be 

referred to as Gaussian weights and nodes respectively. 



The following theorem appears to be due to Markov [15, 16]; proofs of it can also be 

found in [10] and [S] (in a somewhat different form). 

Theorem 2.1 Suppose that the functions 6u...,ö2n : [a.b] -» R form a Chebysliev 

system on [a.b]. Suppose in addition that ~ : [a.b] -> R is a non-negative integrable 

function [a. b] -*■ R. Then there exists a unique Gaussian quadrature for the functions 

Oi,.... o2n on [a, b] with respect to the weight function u. The weights of this quadrature 

are positive. 

Remark 2.1 While the existence of Generalized Gaussian Quadratures was observed 

more than 100 years ago, the constructions found in [15. 16]. [3. 10]. [7, S] do not easily 

yield numerical algorithms for the design of such quadrature formulae: such algorithms 

have been constructed recently (see [13. 2S, 2]). The version of the procedure found in 

;2j was used to produce the results presented in the Examples 5.1. 5.2. 5.3 in Section 5.1: 

the reader is referred to [2] for details. 

Applying Theorem 2.1 to the Example 2.4, we obtain the following thcor em. 

Theorem 2.2 Suppose that under the conditions of Example 2.4, n is even. Then 

there exist n/2 points fls t2, ■ ■ ■. tn/2 on the interval [-1,1] and positive real numbers 

w\. u'o u',,/2 such that 

1 n/2 

I w(t) ■ ol{t) dt = £ WJ ■ öiitj), (12) 
-l j=i 

for all i = 1,2,..., n, with p1; p2, •.., $n the first n eigenfunctions of the operator Q 

defined in (9). 

Corollary 2.3 The above theorem provides a tool for the efficient approximate evalua- 

tion of integrals of the form (12), as follows.   Given a positive real e, we construct the 



Singular Value Decomposition of the operator P defined in (S). Choosing n to be the 

smallest even integer such that 

oo 

£     ^   <  t2: (13) 

ice construct an n/2-point quadrature that integrates n first right singular functions ex- 

actly (effective numerical schemes for the construction of such quadratures can be found 

in [13. 2S. 2]). Now. we observe that due to the triangle inequality combined with the 

positivity of the obtained weights u\. w2..... u-ni-2. 

n/2 i 

I £ Wj ■ elcl1-' - f w(x) ■ e'cxt dt\ <e (14) 

fur any x c [ — 1.1]. 

Remark 2.2 The i>rincipal subject of this note is the fact that the pattern of an antenna 

array is formed by a physical process amounting to a hardware implementation of a 

quadrature formula for functions of the form (9). Thus, designing a configuration of 

elements for such an antenna is equivalent to constructing a quadrature formula for 

functions of the form( 9). and can be achieved via the techniques described in [13. 2S. 21). 

3    Elements of Antenna Theory 

In this section, we summarize certain facts about the theory of linear antenna arrays; all 

of these facts are well-known, and can be found, for example, in [9]. 

3.1     Pattern of a linear array 

A source distribution a on the interval [-1,1] creates the far-field pattern / : [0,TT] -» C 

given by the formula 

l 

f(9) = J' a(u) ■ e"-"-™™ du.. (15) 
-l 



where /■: is the free-space wavenumber. u is the point on the interval [-1.1]. and 9 is the 

angle between the point on the horizon where the far field is being evaluated and the 

x-axis. It is customary to introduce the notation 

x = cos{6), (16) 

and define the function F : [-1.1] -> C by the formula 

F{x) = f{acos{x)). (17) 

Xow. defining the operator .4 : I2[-l. 1] -» L2[-l, 1] by the formula 

l 

A(a)(x) = Ja(u)-e'k-UI du, (IS) 
-l 

we observe that 

l 

F = A(a) = Ja(u)-e'k^ du. (19) 
-l 

The function F is usually more convenient to work with than /. and the following obvious 

lemma is the principal reason for this difference. 

Lemma 3.1 Suppose that a e L2[-l. 1]. the function F e L2[-l, 1] is defined by (19), 

o is a real number, arid the function a G l?\-\, 1] is defined by the formula 

d(u) = eiau-o(u). (20) 

Then 

A{d)(x) = A(a)(x - a) (21) 

for all x e (-co, co). In other words, in order to translate the antenna pattern F (viewed 

as a function of x = cos{6) ) by a, one has to multiply by e!'-Q'fc the source distribution a 

generating the pattern F. 



Observation 3.1 While the obvious physical considerations lead to the antenna pattern 

F defined on the interval [-1,1]; the formulae (15), (11) also define naturally the exten- 

sion of F to the function R -> C; in a mild abuse of notation, we will be denoting by F 

both the original mapping [-1.1] -> C and its extension to the mapping R -> C. Simi- 

larly, we will be denoting by A both the operator L2[-l. 1] -> L2[-l. l] defined by (IS) 

and its natural extension mapping L2[-l. 1] -> c^(R). 77ze restriction of F on R\[-l. 1] 

26' referred to as the invisible spectrum of the source distribution a and plays an important 

role in the antenna theory (this role is discussed briefly in the following subsection). By 

the same token, the restriction of F on the interval [-1.1] is referred to as the visible 

spectrum. 

When an antenna array is implemented in hardware, it is (usually) constructed of 

a finite collection of elements, as opposed to being a continuous source distribution. 

Mathematically, it is equivalent to replacing the general function a in (15). (19) with a 

defined by the expression 

n 

v(z) = Y.3J-°Au)- (22) 
J = I 

with Oi.o-i ,on the source distributions generated by individual elements, and the 

coefficients J1.32....,3n the intensities of the elements.   As a rule, the elements are 

localized in space (i.e.  the functions Oi,o2....,on are supported on small subintcrvals 

of :-l.li). and very often, all of the elements are identical (i.e.   the functions o: are 

translates of each other), so that 

<?j[u) = o{u - Uj), (23) 

with o the source distribution of a single element located at the point u = 0, and Uj the 

location of the element number j. Obviously, the far-field pattern of <j> is given by the 

formula 
l 

F0(x) = J Q(U) ■ e"-™ du: (24) 



25) 

combining (24) with (22) and (23). we obtain the identity 

} 
a{x) = / q(u) ■ evk-ux du 'Y.3r e^""'"1. 

-1 3 = 1 

known in the antenna theory as the principle of pattern multiplication. 

Remark 3.2 The standard form of the principle of multiplication reads: "The field 

pattern of an array of nonisotropic but similar point sources is the product of the pattern 

of the individual source and the the pattern of an array of isotropic point sources, having 

the same locations, relative amplitudes and phases as the nonisotropic point sources"' (see 

[9]). Needless to say this is a special case of the well-known theorem from the theory of 

the Fourier Transform, stating that the Fourier transform of the product of two functions 

is the convolution of the Fourier Transforms of multiplicants. 

4    Antenna Patterns and Corresponding Optimal El- 
ement Distributions 

4.1     Characteristics of an antenna pattern 

Depending on the situation, the design of an antenna array attempts to optimize certain 

characteristics of the resulting far-field pattern, subject to certain constraints on the 

number, power, etc. of the elements. Since the principal purpose of this note is to 

describe a technique for the selection of the locations of the elements that approximate a 

user-specified pattern, we could use any reasonable far-field pattern to be approximated. 

In subsection 4.2, 4.3, we construct optimal element distributions for the so-called sector 

patterns and cosecant pattern, respectively; a detailed discussion of these (and several 

other) pattern cans be found, for example in [14]. 

We will say that the antenna pattern has the e-bandwidth b if 

l 

/     \F(x)\* dx = e* ■ J \F(x)\2 dx (26) 
6<||x||<l -1 



in other words, the proportion of the energy radiated outside the e-beamwidth from the 

axis of the beam is equal to e. The supergain of an antenna is defined (see. for example. 

[27]), as the ratio 

-r3C 

/ \F(x)\2dx 
'o- 

(' 

tr 

note, w 

the i 

i ' - {-<) 
S\F(x)\*dx 
-l 

The supergain (sometimes referred to as superdirectivity) measures the ratio of the en- 

rgy associated with the total spectrum of the antenna to the energy in its visible spec- 

urn: while detailed discussion of supergain and related issues is outside the scope of this 

■e will observe that antenna arrays with large degrees of supergain would violate 

mccrtainty principle, and thus are physically impossible. Attempts to construct 

supergain antennae result in rapidly (exponentially) growing Ohmic losses, prohibitive 

accuracy requirements, extremely low bandwidth, etc. Thus, any potentially useful pro- 

cedure for the design of antenna arrays has to limit the supergain of the resulting patterns. 

4.2     Sector patterns 

It is often desirable to construct antenna patterns that are as constant as possible within 

the main beam, and as small as possible outside it: in other words, ideally, the pattern 

would be defined by the formulae 

Fb(.v) = 1   for   \.r\ < b. (2S) 

Fb{x) = 0   for   \x\ > b, (29) 

with b a real number such that 0 < b < k. Needless to say, the function Fb defined by 

the formulae (2S), (29) is not band-limited, and some approximation has to be used. A 

standard procedure is to truncate the Fourier Transform of Fb, approximating it by the 

function Fb defined by the formula 

i , .       fl sin(b ■ t)     ,.,    , 
Fb(x)= I {      > • e>-kxt (30) 

-l 
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(see. for example. [26]). An important special case occurs when b = k. with (30) assuming 

the form 

f. ,  .       fl sinlk -t),,.rt 
Fk(x) = J_   -f - ■ e'k-T-1: (31) 

obviously, the latter expression is a band-limited approximation of the d-function. An- 

other frequently encountered situation is that of b = k/2, so that (30) assumes the form 

F,(,) = /_;^iil.c—. (32) 

which is a band-limited approximation to the beam that is equal to 1 for -1/2 < x < 1/2 

and to zero elsewhere. 

In Section 4.4 below, we demonstrate optimal element configurations that produce 

approximations to the patterns (31). (32) with A- = 20~. 10~. 32.4G76-. 

Remark 4.1 While (30) is by no means the only possible band-limited approximations 

to H) Fi:. it is quite satisfactory in most cases, in addition to being simple. Furthermore. 

i he principal purpose of this note is to describe a technique for the selection of locations 

of the nodes, given a pattern to be approximated. Thus, we ignore the issue of the 

optimal choice of Fb. 

4.3     Cosecant patterns 

Another standard far-field radiation pattern is the so-called cosecant pattern (see, for 

example, [19]). Given two real numbers 0 < a < b < 1, the cosecant pattern FQi6 is 

defined by the formula 

Fa,b(x) = ~ (33) 

for all x e [a.b], and 

Fa,b(x) = 0 (34) 

11 



for all x € ([-1,1] \ [a,b]). Again, the function Fa,b defined by the formulae (33), (34) is 

not band-limited, and can not be represented by the expression of the form (24). Before 

the scheme of this note can be applied to FM, the latter has to be approximated with a 

band-limited function: as discussed in Section 4.1 above, if such an approximation is to 

be useful as an antenna pattern, its supergain factor has to be controlled. Fortunately, 

a procedure for such an approximation has been in existence for more than 35 years 

(see, [IS]); the algorithm of [IS] is a modification of the least-squares approach permitting 

the user to limit the supergain factor of the obtained pattern explicitly. At the time, the 

utility of the scheme of [IS] was limited by the (perceived) difficulty in the numerical 

evaluation of Prolate Spheroidal Wave functions: given the present state of numerical 

analysis, this difficulty is non-existent, and it is this author's impression that the insights 

of [IS], [19] deserve more attention than they have been receiving. 

4.4    Optimal distributions of elements 

In this subsection, we briefly describe an algorithm for the construction of optimal (in 

the sense defined below) element configurations for the generation of antenna patterns 

given by (15). of which the patterns (29)-(31) are special cases. As will be seen, the 

procedure is in fact applicable to the design of element configurations for very general 

far-field patterns. 

We start with observing that (15) expresses the far-field pattern F as an integral over 

the interval [-1,1] of functions of the form 

*(«) • c1'"*-1-", (35) 

with 2' = cos{9) determined by the direction 6 in which the far-field is being evaluated. In 

other words, the problem of finding efficient antenna element distributions is equivalent 

to that of constructing quadrature formulae for integrals of the form (8), with 

iu{t) = a(t). (36) 

12 



In the cases when a is non-negative everywhere on the interval [-1.1]. Theorem 2.2 

guarantees the existence of Generalized Gaussian Quadratures, and [13. 2S]) provide a 

satisfactory numerical apparatus for the construction of such quadratures. Obviously, the 

patterns given by the formula (28) are not generated by non-negative source distributions, 

except when 

6< 7T. (3^ 

Thus: for these (and many other) patterns, the conditions of Theorem 2.2 are violated, 

and the existence of Generalized Gaussian Quadratures is not guaranteed. In our numer- 

ical experiments, the techniques of [2]) (after some tuning) have always been successful 

in finding the Gaussian quadratures for integrals of the form (2S); some of our results 

are presented in Section 5 below. 

5    Numerical Examples 

In this section, we present examples of optimal element distributions generating the 

patterns of the preceding Section: all of the results presented here have been obtained 

numerically. Antenna patterns we present are compared to the antenna patterns given 

by uniform source distributions: configurations of elements approximating these antenna 

patterns are compared to equispaced distributions of elements generating the same an- 

tenna patterns. 

5.1     Optimal distributions of elements 

In this section, we demonstrate the results of the application of the techniques of Sec- 

tion 4.4 of this note to the types of antenna patterns described in the Sections 4.2, 4.3. 

In all cases, we choose the size of an antenna array and a pattern to be reproduced, and 

use the scheme outlined in Section 4.4 to design a distribution of antenna elements (both 

the locations and the intensities) located within the chosen array that reproduces the 

required pattern. For comparison, we also generate optimal-(in the least squares sense) 

13 



approximations to the desired pattern generated by equispaced elements located within 

the same array. Since the number of equispaced nodes required to obtain a reasonable 

approximation to the desired pattern is (in many cases) much greater than the number of 

optimally chosen nodes, for each example we demonstrate patterns generated by several 

such configurations. In this manner, the numbers of optimally chosen nodes necessary 

to obtain reasonable approximations to the desired patterns can be compared to the 

numbers of equispaced nodes required to obtain similar results. 

5.1.1    Sector patterns 

Example 5.1   The first example ice consider is of the pattern defined by the formula (32). 

irith /,■ = G2.S312. so that the si:e of the array is 20 wavelengths. 

In Figure 5, we display an approximation to the pattern obtained with 19 elements, 

orcrlayed with the exact pattern: the locations of the elements are displayed in Figure 5a: 

the relative error of the obtained approximation is 5.01%. 

Similarly, in Figure 5g: we display the approximation to the pattern obtained with 21 

elements, overlayed with the exact pattern: the relative error of the obtained approxima- 

tion is 0.443%: in Figure 5h. we display the the approximation obtained with 17 elements. 

In the latter case: the relative error of the obtained approximation is 6.439c; Figure 5i 

depicts the 17-node distribution producing the approximation illustrated in Figure 5h. 

Finally, Figure 5j contains a graph of the values of the sources located at the 17 nodes 

depicted in Figure 5i and generating the pattern shown in Figure 5h. 

For comparison, the optimal approximation obtained with 19, 24, 29, 31, and 34 

equispaced elements are displayed in Figures 5b: 5c; 5d: 5e, of, respectively; these are 

also overlayed with the exact pattern. 

Example 5.2 Our second example is identical to the first one, with the exception that 

k = 31.416, 50 that the size of the array is 10 wavelengths. 

In Figure 6. we display an approximation to the pattern obtained with 9 elements, 

overlayed with the exact pattern; the locations of the elements are displayed in Figure 6a; 

the relative error of the obtained approximation is 11.2%. 
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Similarly, in Figure 6f. we display the approximation to the pattern obtained with 11 

elements, overlayed with the exact pattern; the relative error of the obtained approxima- 

tion is 0.600%. 

For comparison, the optimal approximation obtained with 9. 14. 16. and IS equispaced 

elements are displayed in Figures Cb; 6c: Cd: 5e; respectively;.these are also overlayed 

with the exact pattern. 

Example 5.3  Our third example is identical to the preceding two. with the exception 

that k = 102. so that the size of the array is about 32.45 wavelengths. 

In Figure 7a. we display an approximation to the pattern obtained with 23 optimally 

distributed elements, overlayed with the exact pattern and with the pattern obtained with 

23 equispaced elements. 

The relative error of the obtained approximation is 5.4%; needless to say. the error of 

the approximation obtained with the equispaced nodes is more than 70%. .45 can be seen 

from Figure 7c. the actual size of the obtained 23-element array is about 21 wavelengths: 

in other words, in order to obtain this precision, the array needs to be about 2/3 of the 

nominal (maximum permitted) length. 

In Figure 7b. we display the approximation to the pattern obtained with 42 and 4S 

elements, overlayed with the exact pattern. 

It is worth noting that with 33 optimally distributed elements, the pattern is approxi- 

mated to the precision 0.12%; we do not display the obtained pattern since it is visually 

indistinguishable from the pattern being approximated. 

Example 5.4 Our final example is somewhat different from the preceding ones, in that 

instead of approximating a sector pattern, we approximate a cosecant pattern (see (33), (34) 

in Subsection 4-3 above). 

In this example, we set 

a = sm(15°), (38) 
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b = sm(75°), (39) 

and use the procedure of [18] to approximate Fa^b with a band-limited function. The band- 

limit has been more or less arbitrarily set to 110, resulting in an antenna array about 35 

wavelengths in size, and the supergain factor of the approximation was set to 1.1. 

In Figure 8a. we display an approximation to the pattern obtained with 53 optimally 

distributed elements, overlayed with the exact bandlimited pattern and with the pattern 

obtained with 53 equispaced elements. 

The relative error of the obtained approximation is 1.799c: the error of the approxi- 

mation obtained icith the equispaced nodes is about 429c. 

In Figure 8b. we display the approximation to the pattern obtained with 47 optimally 

distributed elements, overlayed with the exact pattern: the purpose of this final figure is 

to demonstrate the behavior of the scheme when the number of elements is insufficient 

(i.e.  when the array is underresolved). 

It is worth noting that it takes about 70 equispaced nodes to obtain the resolution 

obtained with 47 optimally chosen ones. 

The following observations can be made from Figures 5 - Sb. and from the more 

detailed numerical experiments performed by the author. 

1. In order to obtain reasonable precision, the scheme requires about 1 point per wave- 

length in the antenna array: this is more or less independent from the structure of the 

beam as long as the pattern is symmetric about the point x = 0. This fact is observed 

numerically, even for modest numbers of nodes: for large-scale arrays, this statement 

(interpreted asymptotically) can be proved rigorously. For certain beam structures, the 

required number of nodes is even less (see Example 5.3). The reasons for these additional 

savings are subtle, and have to do with the fact that the continuous source distribution 

generating the pattern is relatively small on a large part of the antenna array; the al- 

gorithm of [2] takes advantage of this fact to reduce the number of nodes. When the 

beam is not symmetric about x = 0, the number of elements required does depend on 
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the structure of the pattern, and the dependence is fairly complicated. Generally, the 

improvement for non-symmetric beams is less than that for the symmetric ones. 

2. The qualiative behavior of the scheme is similar to that of the Gaussian quadratures 

in that it displays no convergence at all until a certain minimum number of nodes is 

achieved: after that, the convergence is very fast. This behavior is not surprising, since 

the scheme is based on a Generalized Gaussian quadrature. 

3. For the sector pattern with the sector [-1/2.1/2]. the scheme reduces the required 

number of nodes by a factor of about 1.5 for small-scale problems, and roughly by a 

factor of 2 for large-scale ones: again, for large-scale problems, an asymptotic version of 

this statement can be proven rigorously. 

4. For the cosecant pattern with the parameters specified by (3S), (39), the number 

of nodes required is reduced by approximately a factor of 1.4. As the sidelobe level is 

reduced, the improvement obtained by going from the equispaced discretization to the 

optimal one increases rapidly. 

5. An examination of Figures 5a, Ca shows that while the optimal nodes are by no means 

uniform, they display no clustering behavior. 

G. An examination of Figure 5j shows that the intensities of individual elements do not 

become large: this is confirmed by the more extensive numerical experiments performed 

by the author. 

7. The combination of the preceding two paragraphs (combined with additional numer- 

ical experiments and analysis) provide evidence that configurations of this type should 

pose no supergain problems. 

6    Generalizations 

The results described above admit radical generalizations in several directions; several 

such directions are discussed below, 
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1. Conformal one-dimensional arrays. The extension of the techniques of this note 

to one-dimensional arrays located on curves in i?3 is completely straightforward, involving 

only a modest increase of the CPU time requirements of the procedure. Improvement in 

the number of nodes required to produce a prescribed pattern is similar to that in the 

case of a linear array. 

2. Planar two-dimensional arrays. A straightforward generalization of the results of 

Sections 4. 5. is to rectangular planar arrays. Here, a tensor product quadrature can be 

constructed from the quadratures of Sections 4, 5. possessing all of the desirable prop- 

erties of the latter. Obviously the advantage in the number of transducers is squared, 

so that (for example) replacing 50 nodes in each of the two directions by 23 nodes (see 

Example 5.3 above) will lead to a factor of (50/23)2 ~ 4.7 savings in the number of 

elements. 

The theory of Section 4 has been extended for disk-shaped arrays, via (inter alia) the 

techniques developed in [23]. The improvement in the number of nodes is comparable to 

that obtained in the rectangular geometry, and the CPU time requirements do not differ 

appreciably from those in the case of linear one-dimensional arrays. 

The extension of the theory to more general geometries in the plane is in progress. At 

the present time, our only numerical experiments have been with arrays on triangles: the 

results are encouraging, but the CPU time requirements of the algorithms are excessive 

(we have only been able to design triangular arrays about 6 wavelengths in size). We 

are now in the process of constructing a more efficient numerical procedure for such 

computations. 

3. Conformal two-dimensional arrays. The only environment in which we have 

a satisfactory theory is when the array is located on a surface of revolution; even in 

this environment, no experiments have been performed. We have not investigated more 

general conformal two-dimensional arravs in sufficient detail. 
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O.S      -0.6      -0.4      -0.2        0        0.2       0.4       0.6       O.S 

Figure 5: The pattern created by the 19 optimal elements, depicted in Figure 

5a as described in Example 5.1 

Figure 5a: The distribution of elements creating the pattern depicted in 

Figure 5, as described in Example 5.1 
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-1       -O.S     -0.6     -0.4     -0.2        0        0.2       0.4       O.G       O.S 1 

Figure 5b: The optimal approximation to the sector pattern generated by 19 

equispaced nodes, as described in Example 5.1 

-1       -O.S     -0.6     -0.4     -0.2       0        0.2      0.4      0.6      0.8        1 

Figure 5c: The optimal approximation to the sector pattern generated by 24 

equispaced nodes, as described in Example 5.1 
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Figure 5(1: The optimal approximation to the sector pattern generated by 29 

equispaccd nodes, as described in Example 5.1 

-1       -0.8     -0.6     -0.4     -0.2       0        0.2      0.4      0.6      0.8        1 

Figure 5e: The optimal approximation to the sector pattern generated by 31 

equispaced nodes, as described in Example 5.1 

21 



-1 

Figure 
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of: The optimal approximation to the sector pattern generated bv 34 

equispaccd nodes, as described in Example 5.1 
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-1       -O.S     -0.6     -0.4     -0.2       0        0.2      0.4      0.6      0.8        1 

Figure 5g: The optimal approximation to the sector pattern generated by 21 

optimal nodes, as described in Example 5.1 
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Figure öli: The optimal approximation to the sector pattern generated by 17 

optimal nodes, as described in Example 5.1 

0.8     -0.6     -0.4     -0.2       0        0.2      0.4      0.6      0.8        1 

Figure 5i: The distribution of 17 elements creating the pattern depicted in 

Figure 5h, as described in Example 5.1 
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-o.s -0.6        -0.4        -0.2 0 0.2 0.4 O.G O.S 

Figure 5j: The values of the sources located at the nodes depicted in Figure 5i 

and generating the pattern depicted in Figure 5h. as described in Example 5.1 
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Figure G: The pattern created by the 9 optimal elements, depicted in Figure 

Ga as described in Example 5.2 

-0.5 

-0.5 0.5 

Figure 6a: The distribution of elements creating the pattern depicted in 

Figure 6. as described in Example 5.2 



-1        -O.S      -O.G      -0.4      -0.2        0 0.2       0.4        O.G       O.S 1 

1-igure Gb: The optimal approximation to the sector pattern generated by 9 

cquispaccd nodes, as described in Example 5.2 

■1        -O.S      -0.6      -0.4      -0.2        0 0.2       0.4       0.6       0.8 1 

Figure 6c: The optimal approximation to the sector pattern generated by 14 

equispaced nodes, as described in Example 5.2 
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Figure Gd: The optimal approximation to the sector pattern generated by 16 

equispaced nodes, as described in Example 5.2 
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Figure 6e: The optimal approximation to the sector pattern generated by 18 

equispaced nodes, as described in Example 5.2 
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Figure Gf: The pattern created by the 11 optimal elements, in Example 5.2 
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S      -O.G      -0.4      -0.2        0 0.2       0.4       O.G       O.S 

Figure 7a: The approximation to the sector pattern generated by 23 optimal 

elements, vs. optimal approximation by 23 equispaced nodes, as described 

Example 5.3 
m 

77  = 48 

-1        -0.8      -0.6      -0.4      -0.2        0 0.2       0.4       0.6       0.8 1 

Figure 7b: The optimal approximations to the sector pattern generated by 42 

and 48 equispaced nodes, as described in Example 5.3 
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3 

Figure Sa: The approximation to the cosecant pattern generated by 53 

optimal elements, vs. optimal approximation by 53 cquispaced nodes, as 

described in Example 5.4 
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-1        -O.S      -0.6      -0.4      -0.2        0 0.2       0.4       0.6       0.8 : 

Figure Sa: The approximation to the cosecant pattern generated by 47 

optimal elements, as described in Example 5.4 
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1    Introduction 

In this paper, we describe a fast algorithm for the evaluation of all pairwise interactions in 
large ensembles of particles in the plane, i.e., sums of the form 

N 

u(xi) = 22qjK(xi,xj), (i) 
J=I 

where 9l^ are arbitrary complex numbers, xx,... ,xn are points in the plane, and 
K : R ->R is a non-oscillatory kernel. Such computations appear in a variety of numerical 
methods for the solution of problems of computational physics. 

The algorithm of this paper is a version of the Fast Multipole Method (FMM) in two 
dimensions. The structure of the FMM algorithm is left virtually unchanged from the one 
described by in [3]. The version of the FMM algorithm used in this paper, however, replaces 
the Taylor and Laurent expansions with "tensor products" of Legendre expansions that are 
subsequently compressed via the Singular Value Decomposition (SVD). This approach leads 
to an algorithm that can be applied to a variety of non-oscillatory kernels that are sufficiently 
smooth away from the diagonal. 

In two dimensions, the original Fast Multipole Method (FMM) relies on the Taylor and 
Laurent expansions (see [14], [7]) for the evaluation of Coulomb interactions in large ensem- 
bles of particles. During the last decade, several improvements of the original scheme have 
been suggested. A new version of the FMM, based on specially designed singular function 
expansions, was introduced in [10]. The approach taken in the latter paper, when used in 
combination with an intermediate representation consisting of complex exponentials, leads 
to an algorithm that is about five times as fast as the original FMM, due to the reduction 
of the number of parameters needed to represent far and near fields. A similar technique 
was used m one dimension in [18]. A version of the FMM for polynomial interpolation 
(see [5j) uses Chebyshev expansions that are compressed by a suitable change of basis ob- 
tained via Singular Value Decomposition (SVD). Finally, an analytical apparatus based on 
least squares approximation of integral operators was developed in [17. This analytical 
apparatus leads to fast algorithms for a fairly large class of kernels in one dimension 

The plan of the paper is as follows. In Section 2, we introduce mathematical and 
numerical preliminaries. In Sections 3 and 4, we describe a generalized Fast Multipole 
Method in two dimensions and present the complexity analysis. Finally, in Section 5 we 
demonstrate the performance of the algorithm with several numerical examples. 

2    Mathematical Preliminaries 

2.1    Gaussian Integration and Interpolation 

In what follows, we will denote by P£b the n-th Legendre polynomial on the interval [a b] C 
R. We will refer to the roots s?'6,..., *£» of P^(x) as the Gaussian nodes of order n and 
will denote by «y ,..., <* the weights of the corresponding Gaussian quadrature on the 
interval [a, b]. We will denote by Ln the projection from the space of continuous functions 
on the interval [a, b] to the space of polynomials of order n, preserving the function values at 



the Gaussian nodes. For a given continuous function / : [a, b] -+ C, the function Lnf(x) is 
the polynomial of order n such that Lnf(xtf) = f(x<tf). As is well known, for all x e [a, b], 

n-l 

£n/(*) = £afc.P°'6(z), (2) 
Jt=0 

and the coefficients ak are given by the formula 

** = £ <? ■ ftä) ■ *H*tf)- (3) 
m=l 

The polynomial Lnf will be referred to as n-th order Legendre expansion of the function 
/. For any integer n we will denote by WL^ the £°°-norm of the operator Ln, denned by 
the formula 

ll^nlloo = SUp ||I„/||Lcc[ai6]. (4) 
ll/lli«[a,6]=l 

We will denote by Ql{x), ...,an(x) the set of polynomials of order « defined by the 
formulae 

n 
at(l)=   n   ~r,   1 = 1,2,...,«, (5) 

where xx,... ,xk are the Gaussian nodes of order « on the interval [a, b]. It is readily seen 
from (5) that for any continuous function / : [a, b] -)• C, 

n-l n 

Lnf(x) = J2ak-Pk(x) = J2 f(xi) • <*.(*)• (6) 
k=0 i=l 

For any natural « and continuous function / : [a, b] -» C, we will denote by Enf the 
error of the best approximation to / among all polynomials of order «, i.e., 

Enf = rmn\\f-P\\Loo[aM. (7) 

Let p > 0 be an arbitrary positive real number. For any analytic function / : C -> C we 
will denote by M([a, b], f, p) the maximum of the absolute value of / in the ^-neighborhood 
of the interval [a, b], i.e., 

M{[a,b],f,p) =  sup     sup   \f(x + peiB)\. (8) 
xe[a,b]ee[-*,ir] v ; 

The following five lemmas are well known. Their proofs can be found, for example, in 
[loj, [12J. 

Lemma 2.1. Ifn > 0 is an integer, and P : C -> C is a polynomial of order n, then for 
any interval [a, b] C R, 

:j~\\P\\LHa,b] < \\P\\L-M < ^j^HPII^. (9) 



Lemma 2.2. For any continuous function f : [a, b] -> C, 

11/ " WIIL-M] < (1 + ||L„||oc) ■ ||/ - £n/||L~M. (10) 

Lemma 2.3. For any n times continuously differentiable function f : [a, b] -> C, 

11/ " üt/llL-M] < ^g^ • ||/(n)||i0cM. (ii) 

Lemma 2.4. If f : C -t C is an analytic function, then for any positive real p > 0, 

||/M||t„M|<„!.^|M (12) 

Lemma 2.5. i^or any natural n, 

l|£n||oo<n. (13) 

By combining (9), (10), (11), (12), and (13), we obtain the following theorem describing 
the rate of convergence of Legendre expansions of an analytic function on the interval [a, b]. 

Lemma 2.6. Suppose that f : C -> C is an analytic function, and that for some positive 
p>(b- a)/A, 

M([a,b],f,p) <co. (14) 

Then 

„5ä,H/-i»/lli-M]=0. (15) 
Furthermore, for any n > 1, 

ll/-in/IU«M<2(l+n)-M([a,6],/,p).(^)n. (16) 

A standard approach to the construction of polynomial approximations of functions in 
higher dimensions is to expand them into "tensor products" of one-dimensional Legendre 
polynomials. For an m-dimensional cube Q = [a,, b,] x... x [am, bm] and continuous function 
/ : Q -» C, we wiU denote by Lnf the (unique) polynomial of m variables having the form 

n-l n-1 

Lnf(Xl,...,xm) = E ••• E aku..,km-P%'bl(xi)-...-P£'bm(xm), (17) 
*i=0       fcm=0 

and coinciding with / on thenm "tensor product" Gaussian nodes 

\xkx    '•••'
xkm     h    «l = !,•••, n;...;km = l,.. .,n; (18) 

the coefficients afcl)...tfcm are given by the formula 

n-l n-l 
fl* *-= E ••• E <1*-"^S^7(«gA,...,*c^)-^lA(*S*)--..-iC^(*E:*»). 

*i=0       fcm=0 

(19) 



In a mild abuse of terminology, we will be referring to such polynomials as polynomials of 
order n in Rm and to expansions of the form (17) as Legendre expansions of order n in the 
cube Q E Rm. For an analytic function / : Cm -> C, we will denote by M(Q,f,p) the 
maximum of the absolute value of / in the p-neighborhood of the cube Q, i.e., 

M{QJ,p)=   max   sup   sup   \f(xu...,xk + peie,...,xm)\. (20) 

The following two lemmas are a simple consequence of Lemmas 2.1 and 2.6; they can 
be viewed as multidimensional analogues of the latter (see for example [17]). 

Lemma 2.7. 7/n > 0 is an integer and P : Cm -+ C is a polynomial of order n, then for 
any cube Q = [a, b]m C Rm, 

1 „m 
j^pl|PH^W) * llPH*-«> * ^Z^WPWLHQ). (21) 

Lemma 2.8. Suppose that f : Cm -»■ C is an analytic function on Cm, and that for some 
positive p> {b-a)/A, 

M([a,b}m,f,p) <oo. (22) 
Then, for any n > I, 

11/ (23) ' " Lnf\\Leo[atb]m < 2(1 + n)m ■ M([a, b}™, /, p) . f^.\" . 

2.2    Singular Value Decomposition of Integral Operators 

Let T : L2(Y) -*■ L2{X) be integral operator given by the formula 

(T-f)(x) = JYK(x,y)f(y)dy, (24) 

where K is a square integrable function on X x Y, i.e., 

\\K(x,y)\\LHXxY) = (J fx^\K(x,y)\2dxdy\      <+oo. (25) 

The function K : X x Y -> R is usually referred to as the kernel of the integral operator T. 
The following theorem can be found (in a more general form) in [15]. 

Theorem 2.9. For any K E L2{X x Y), there exist two orthonormal systems of functions 
{uk} 6 L (X), {vk} E L2(Y), and a sequence of nonnegative numbers si>s2>...>0 
fork = 1,2,..., such that ' 

00 

K(x, y) = 53 uk{x)skvk(y), (26) 
fc=i 

in L2(X x Y) sense, 
00 

Yi \sk\2 < +oo, (27) 
Jfc=i 

and the sequence {sk} is uniquely determined by K. 



Formula (26) is normally referred to as the singular value decomposition (SVD) of the 
operator T (or the kernel K). The functions uk and vk are usually referred to as the left 
and the right singular functions, respectively, and the numbers sk are referred to as singular 
values of the operator K (or the kernel K). 

The singular value decomposition can be used to construct finite-dimensional approx- 
imations to the operators of the form (24) and the corresponding kernels K. Specifically, 
given a positive real e > 0, one can truncate the expression (26) after a finite number p of 
terms, leading to the expression 

p 

K(x,y)KY/Uk(x)skvk{y). (28) 
fc=i 

Now, if p has been chosen in such a manner that 

\ 
E   sl<z, (29) 

k=p+l 

then due to (26), 

\\K{x,y) - Y,u*(x)skvk(y)\\L2(XxY) < £• (30) 
p 

I 
fc=i 

Theorem 2.10 (Minimal property of the SVD). Suppose that the SVD of the opera- 
tor T : L2{Y) -> L2(X) with the kernel K-.XxY^Ris given by the formula 

K{x, y) = Yl uk{x)skvk{y). (31) 
Jfc=i 

Then for any f e L2(Y), 

p 

\\(T • f){x) - ^ uk(x)skbk\\L2ix) < 5p+1||/||L2(y), (32) 
fc=i 

where the coefficients bk are given by the formula 

bk = JYf{y)vk{y)dy. (33) 

2.3    Approximation of the SVD of Integrals Operators 

The following theorem is a straightforward generalization of Theorem 2.10. 

Theorem 2.11 (Approximation of the SVD). Suppose that the operator T : L2(Y) -> 
L (X) is defined by (24), that there exist a positive number 6 > 0 and a square integrate 
function K:XxY->R such that 

\\K(x,y) - K(x,y)\\LHXxY) < 6, (34) 



and that the SVD of K is given by the formula 

oo 

K{x,y) = J2ük(x)skvk(y). (35) 

Then for any f G L2(Y), 

v 
\\{T ■ f)(x) - £ ük(x)hbk\\mx) <(S + sp+1)\\f\\L2(Y), (36) 

Jt=i 

where the coefficients bk are given by the formula 

h= I f{y)vk(y)dy. (37) 

Proof. Obviously, (34) implies 

|| jY K(x, y)f(y) dy - ^ K(x, y)f(y) dy\\Li{x) < S\\f\\LHY), (38) 

and from Theorem 2.10, we obtain 

f   ~ P 

\\JYK(x,y)f(y)dy-Y,ük(x)hbk\\L2(x)<sp+1\\f\\LHyy (39) 
k=l 

Now, (36) follows immediately from (38), (39), and the triangle inequality. D 

3    Analytical Apparatus 

In the remainder of this paper, we will be assuming that all charges are located in a unit 
square [0,1] x [0,1] in R2. 

3.1    Notation 

We will denote by Y^l'kl'k^ the square 

ffcl-1 ifcll \k2-l  fc2l 
l    2'    '2'J X 

[    2<    '2'. (40) 

W«Tk1)- *' h = *' '""'2'' k2 = h ■ • *' 2'; l wiU be referred t0 M the level of the S(luare 

Y^' »• v, and (h,k2) wiU be referred to as the coordinates of the square y('-*>W   We will 
denote by Z('.*i.*2) the union of the square y«.*i.*2) and its immediate neighbors on the 
level I. We will denote the subset X^k^) of [0,1] x [0,1] by the formula 

I('AW = [0,l]x[0,l]\Z(''i'W) (41) 

and refer to X^M as the interaction domain of the square yC*i.*2).  ^ other wordSi 

the interaction domain of the square y('.*i.*a) consists of aU squares on level I that are 



and 

not immediate neighbors of yC'*1'^) and not yC*i.*a) itself. For consistency, we will also 
referring to the unit square [0,1] x [0,1] as yt0-1'1). 

Suppose now that the function K : y(°-1'1) x yC0'1-1) -> C is such that 

jU.*2> (/*«**> l^»)l2^) ^ < +°°> (42) 

for all/ > 1, Ä! = 1,...,2', k2 = 1,...,2'.  For any square yC*-*»), we will define the 
integral operators 

pQtoto)   .   L2(Y^ki'k^)-^L2{X^'kl^), (44) 

Ä(',*i^2)    .   x2(X(Ilfcl'*2>)-).-L2(y(''*i'fc»)), (45) 

by the formulae 

(/***>.*)(*)    =   JYiikik2)K(x,y)a(y)dy, (46) 

(*<'*■*»>■ <r)(y)    =    f K(y,x)a(x)dx. (47) 

The function (pC*i.*2) . c) e L2^MM)) with a e £2(y(i,fcl,*2)) wiU be referred tQ 

as the potential due to the charge distribution a on the square Y^kl'k2\   Similarly the 
function (J#fcl'*a> • a) € L2(y«>*^)) with ff e tf^UMM)) wiU be referred to J the 

incoming potential due to some charge distribution cr on X^l'kl'k2K 
Due to (42), (43), and Theorem 2.9, there exist functions 

{uin,(lMM)} € L2{Y{lMM)^     {vc*t,(lMM)} e X2(y(Z)fcl,fc2))) (4g) 

and positive real numbers 
{8WMM)}i     (^)}) (50) 

such that 

*(*,V)   =    f;«rt,(',fcl,fca)(a:)*r*,(',*1,*8)t;r1,(',*1,*8)(y). (51) 

K(y,x)   =   f;«^iW(y),fa.(/AA)|;fa,WiA)(jc)> (52) 

*=1 

We will refer to (51), (52) as the outgoing and incoming singular value decompositions for 
the square y('>fci>*2)} respectively. 

We will be using finite-dimensional approximations to the operators (44), (45) obtained 
by truncating expressions (51), (52) after a finite number of terms. Specifically, given two 
natural numbers p\ and rx, we will define the operators 

pVMM)   .   i2(x(/,*1,*2)) ^ L2p«toto)) (54) 



by the formulae 

(Pgf^-'Kz)   =   lY(lkik2)Kpi{x,y)a(y)dy, 

(4^'k2)-<r)(y)    =   fxiikik2)Kri(y,x)o(x)dx, 

with 

PI 

k=l 

fc=i 

Substituting (57), (58) into (55), (56), we obtain 

pi 
(pa,*i,fc2) . y)(x) = J^(''*'*)(j)sw'.('.Wj)fl»l,(IA,i2) 

Jfc=l 

with the coefficients a%tt'{l'kl'k') given by the formula 

cmt,(l,kuk2) _   f wt,{l,kuk2),   \   ,   s   , 

and 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

{EilMM) . a){y) = £ uWMto)iy)sWMto)a*,{iMto)t m 

k=i 

with the coefficients ^'{l'klM) given by the formula 

k -Jx^)Vk {x)a{x)dx- (62) 

The function (!#**> . a) e L*(X«**)) with a e L*(yV**>)) will be referred to 
as the outgoing smgular function expansion due to the charge distribution a on the square 
y«.*i.*2). Similarly, the function (J#fcl-*»> . c) e I^xC**.**)) with a e L2(y«^)) will 
be referred to as the incoming singular function expansion due to some charge distribution 
cr on X(' t'*2'. 

3.2    Singular Function Expansions of the Potentials 

The following theorem provides a tool for approximating potentials produced by arbitrary 
charge distributions. 

Theorem 3.1. Suppose that the outgoing potential g^ku^) e lirx^MM)) « induced bv 
the charge distribution <jV>ki>k2) : I,2(y(l,*i,*2)) -» R, i.e. 

gVMM)(x) = {p(l,klM) . ^W)W = 1^^ K(x,y)a^)(y)dy. (63) 



Then 
00 

tw'iA fAe coefficients a™t>(l<kl'k2) g{ven ^ ^e formuia 

ar«MM) = 1^^ ailMM)iy)vr,(lMM)(y) dy (65) 

Furthermore! for any p > 1, 

p 

< 11 Q(IM M)(X\_Y" u°Ut'('l'kl 'ki) (T) c^'C'^l ,*2)n0Ut,(i,fci ,fc2) ,, 
iiy w    Z^uJt \x)sk ak \\L*(xV'ki<k2)) 

k=i ' 

^ sP+i llCT'       yllL»(y('.*i.*a))i (66) 

and 

tlaf^^l^ll^^lli,^,.,,,. (67) 

Proof. (66) follows immediately from Theorem 2.10. Singular values s™1^**) converge 

to zero as k -> oo; therefore, (66) implies (64). Finally, due to (65), a£
rt,(',*1,*2) are the 

coefficients in the orthonormal basis {v^
l'kl M)}, from which (67) follows immediately.    D 

3.3    Translation Operators and Error Bounds 

The following three theorems constitute the principal analytical tool for manipulating out- 
going and incoming singular function expansions. Theorems 3.2, 3.4 provide formulae for 
the translation of outgoing and incoming singular function expansions, respectively. Theo- 
rem 3.3 describes a mechanism for converting an outgoing singular function expansion into 
an incoming singular function expansion. 

Theorem 3.2 (Outgoing to Outgoing). Suppose that the outgoing singular function ex- 
pansion 0<**.('.*i,*a) : L2(X{lMte)) _> R is given by the formula 

oo 

fc=l 

with the coefficients a^
lMJea) such that 

Ei«ra'fci'fc2)i2<+oo, (69) 
Jfc=i 

and that y('>fci>*2) c Y^1'1'™1'™*). 
Then there exists a linear mapping 

j4(J-l,m1)m2),(i,fc1)A:2) . f^ _^ ,2^ (?()) 



converting the sequence of coefficients {a™t'{l'klM)}) k = l,2,... into the 
m = 1,2,..., defined by the formulae sequence {aT,{l~1,mum2)}, 

aout,(l-l,mum2) _ ^ Al-l,mi,m2),(l,kuk2)   out,(lM,k2) 
m /-*i    mk ak ) 

*=1 

such that for all x inside _X"('-1'mi'm2) 

oo 

gout,(lMM)^ = £ u^*'(,-1'm»'m2)(x)5~«.('-l.mi,m2)ao«t,(J-l,mI,m2)# 

m=l 

(71) 

(72) 

(73) 

Furthermore, for any p>\, 

\\gout,{lMte){x) _ J2 u^l-l^-m^(x)s^t,(l-l,mi,ma)a^t-l,mi,m2)^ 
m=l 

- 5p+l 

N 
jr|a«*.«.*i.*2)|2i 
*=1 

(74) 

Proo/. We observe that p«".«.*!.**) can be viewed ^ the potentiaJ 

induced by the charge distribution *<'•*!.*»> : z2(y(«AA)) _> Ä> defined by the formuk 

aVM,k2)(y) = J2a™t'{l'kuk2)vout>{l'kl'k2)(y). 
fc=l 

(76) 

We will denote by oV-m*») the charge distribution on the square y«-i.mi.»..> given bv 
the formula ° J 

r('- -l,mi,m2)(  ) _  f a(''fcl'*»)(y),     if y £ yC*!,*^ 
10, ify g y(f-1^ ,i .m2)\y(',*i,*2) (77) 

and by pC-L-i.«.) the outgoing potential on X«-m ™) due to the distribution a«-i.»»i.«,) 
on the square y('-1>mi.m2) j e 

= X(.-i.-.,«a,^
as'^"I,mi,ma,(y)^ (78) 

Due to Theorem 3.1, 

9{l-^mi'm'Hx) = f) U^('-^i.mJ)(I)ä««.(M1m1,mJ)a^,(J.i)miim2)) (?g) 
m=l 

10 



with the coefficients <Ct,(' 1'mi-m2) defined by the formula 

Now, using (77), we have 

c<,(,-limi,m2) = j^^ a^^(y)v^-^^){y)dy (81) 

Substituting (76) into (81), we arrive at 
00 . 

„»,,„-,,„„„„ _ j.„-«■*« (j^   «T^*>MC«M«~><»)*) = 
oo 

— Zsak Amk , 
Jfc=l 

where 

^E'*«'—-»- /y( w .-^«„K;«-^.« )(v) #. 
Now, from the combination of (78) and Theorem 2.10, we obtain 

p 
Euout,(l-l,mi,m2)(   \sout,(l-l,mi,m2)„otit,(l-l,mum2)n ^ 

(82) 

(83) 

m=l 

< 5jJ{('"1'mi'm2)||a('-1'm>'m8)| lx,2(y('-l.m1,m2)). (84) 
Due to (77), we have 

p 

J3 tC*,('"1,mi,ma)(x)fi~t,('"1'mi,m2)a'wt'(/~1'mi'ma)| 
m=l 

X,2(X(I-l.mi,m2))  < 

<  e<mt'('-1'ml."*2)||    (i,*!,^)!! 

Thus, 
L2(yCUi,fc2)). (85) 

p 

I 
m=l 

||gaut,(Z,fc1,*2)^j _ £- lz«*.a-l,mi)m2)^a.j5aBt,(J-l,m1,m2)acwt1(/-lfm1,ma)| 

- SP+1 N 
00 

y^,cmt,(Z,fci,fc2)|2 

Jfc=l 

li2(A'('-1>mi'Tn2)) 5; 

(86) 

Finally, the singular values .^ converge to zero as fc -> oo; therefore, (86) imphes 
(73), and from the combination of (76), (77), (80), we have 

E|a«t,(l-l,mi,ma)|2 < \\-(l-l*num2)\\2 _ 
1   m '     - ll<J Nl2(y('-l.mi,m2)^ = 

= ||a^^)||22(y(Uifc2)) = f;|arW1,fc2)|2_ 
Jfe=i 

(87) 

11 



The proof of the following two theorems is virtually identical to that of Theorem 3 2 
and is omitted. ' 

Theorem 3.3 (Outgoing to Incoming). Suppose that the outgoing singular function 
pansion g^dMM) . L^X{IMM)) _+ R is given by the formula 

ex- 

goiit,{iMM)^ _ Ylu™t'(l'kl'k2)(x)s°ut'<-lMM)acmt'{l'kuk2) 

k=l 
(88) 

with the real coefficients 0?ttt,(',*1'*8> such that 

k=l 
(89) 

and that y('-mi.m2) c x^M. 

Then there exists a linear mapping 

ß(l,mi,m2),(l,kuk2) . /2(m -». l2(N) (90) 

converting the sequence of coefficients {a?«1*1'1*)}, k = 1,2,... into the sequence {<C(''mi'm2H 
m = 1,2,..., defined by the formulae ' 

00 
atn,(J,m1,m2) _ V^ _g('.mi,m2),(i,A:i,*2)   out.ti.ALJfcj) 

^«lAh« . ^ ^ „r«Vl,*!)(s)t4„,(,,rai,m,)M ^ (92) 

suc/i that for all x inside y(z>mi."*2) 

00 

gOut,{lMte)(x) _  V^ u<n,(J,mi,mj)/   %   in,(/,mi,m2)   in,(/,mi,m2) 

m=l 

and 

(93) 

^ |a-,a,m1,m2)|2 < g ^.(/.fci,*,)^ ^ 

Furthermore, for any p > 1, 

||y0Bt,(''*1,*2)(x) -  t" <-(/'mi.^)(x)si".('^i.m2)am,(/,ml)m2)|| v   /      ^    m \^Jäm am ll£2(y('.mi.m2)) < 

^ 

<-■ c»n>('.»ni.m2) 
^ Sp+l 

J2Kt,UMM)^ (g5) 
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Theorem 3.4 (Incoming to Incoming). Suppose that the incoming singular function 
expansion g^MMte) . L2(Y(IMM)) _> R is given by the formula 

gin,(lMM)^ _ y* uin>VMte)^sintfMMjntfMM) 

k=l 
(96) 

with the coefficients a
l^lM'k2) such that 

ZK'{lMM)\2<+oc, (97) 

and that y('+i,"ii,m2) c y(f,fci,fc2)_ 

Then there exists a linear mapping 

converting the sequence of coefficients {a^1^}, k = 1,2,... info <Ae sequence {a£'('+1'mi'™2)}, 
m = 1,2,..., defined by the formulae 

00 
aw,(/,mi,m2) _ V^/-T('+l,mi,m2),(J,A:i,fc2)   out,(i,fci,fc2) ,.., m — Z^ °mJt afc , (99) 

k=l 

where 
Cjw««)**« _ £^ „?**«(,„£*««.-.)(,,) ^ (100) 

suc/i i/iai for all y inside y('+1>mi>m2) 

00 

gin,(l,kuk2)(x} _  J^ Mw.('+l.mi,ma)(a.j5wI(/+l,n»i,m2)am,(/+l,mi,m2) QQ^ 

m=l 

and 

£ |a*i'('+l'mi'm»)|2 < f; |BJ*.W^)|2. (102) 
m=l fc=l 

Furthermore, for any p>\, 

v 
||flinl(/,*1,fc8)/a.x _ y> tiw.('+l.mi,ma)/   \  in,(J+l,fni,m2)/,in,(t+l,mi,ma)|| ^ 

V    ' -t-^     m Wm °m ll£2(y(l+l.m1,m2)\  < 

^   in,(i+l,mi,m2) 

^ 
El«?***'!'- (103) 

3.4    Singular Value Decompositions of Translation Operators 

The algorithm of the following section (like its counterpart for harmonic fields described, 
for example, in [3]) depends on the efficient application of the translation operators (70),' 
(90), (98) to arbitrary vectors.   Clearly, these operators convert functions on the square 
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into functions on the square, and could be extremely expensive to deal with numerically. 
Fortunately, Theorems 2.7, 2.8 of Section 2 guarantee that (asymptotically speaking) the 
cost of applying each of the operators (70), (90), (98) to an arbitrary vector is of the order 

c + d-\og(s)\ (104) 

with the constants c, d independent of the operator to be applied (as long as the conditions 
of Theorem 2.8 are satisfied). We will discuss the procedure for the efficient numerical 
evaluation of the operator (90) in some detail; the operators (70), (98) are in this respect 
identical to the operator (90). 

Let us consider the operator (90) with some mi, m2, ku k2. Choosing some natural n, we 
construct annxn tensor-product Gaussian discretization of each of the squares Y^mum^ 
y('.*i.*2>, and expand the kernel K on y('.»ni,m2) x Y(iMM) into a 4-dimensional tensor 
product Legendre series. Due to Theorem 2.8, the error of such an expansion is bounded 
by 

6(1 + n)4 • <?", (105) 

where 6 is a positive constant and \q\ < 1. Choosing n = c + d- log(e), we guarantee that 
the error of our expansion is less than any arbitrary a-priori prescribed e. An examination 
of (105) shows that the length of the expansion required to obtain reasonable accuracy 
is not excessive, though it is considerably greater than the lengths expansions required 
for harmonic kernels (see, for example, [3]). An additional improvement in the required 
lengths of expansions is obtained by replacing the tensor-product Legendre expansions of 
the operators (70), (90), (98) with their Singular Value Decompositions via Theorems 2.9, 
210, 2.11. The cost of this latter step (in terms of CPU time requirements) is of the order 
p , and would be excessive, except for the fact that this procedure has to be performed only 
once for each kernel, since the necessary SVDs can be precomputed and stored; needless to 
say, this requires an amount of storage proportional to p • n2. 

Remark 3.5. The situation is simplified when the kernel K is convolutional, i.e depends 
only on the difference between its arguments. Indeed, in this case, the SDVs of the trans- 
lation operators i4('-i.»»»i,m2),(/lfcx,A:2)> ß(i,mi,m3UiMM)i c

,('+i,mi1m2),(J,fci)*2) do not have tQ 

be calculated for all interacting pairs of squares on all levels, but only for all interactions 
of a single square on each level. In this case, the construction of the SVDs requires trivial 
amounts of both CPU time and disk space. When the kernel K is not only convolutional but 
possesses additional symmetry (rotational, up-down, etc.) the situation is further simplified. 

4    Generalized Fast Multipole Method in Two Dimensions 

4.1    Notation 

In this section we will introduce the notation to be used in the description of the algorithm. 
For any subset A of the computational box, T{A) will denote the set of particles inside 

A. 

Bi is the set of all nonempty boxes at the level I. B0 will denote the computational box 
itself. 
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If box contains more than s particles, it is called a parent box. Otherwise, the box is 
said to be childless. Note that s is the maximum number of points in a childless box. 

A child box is nonempty box obtained from the division of a parent box into four. 
Colleagues are adjacent boxes of the same size at the same level. A given box has at 

most eight colleagues. 

Two boxes 6 and c are said to be well separated if they are separated a distance greater 
or equal to the length of the size of the smallest box. 

With each box 6 at the level I, we will associate five lists of other boxes. 
List 1 of a box b will be denoted by Ub. It is empty if b is a parent box. If b is childless, 

it consists of 6 and of all childless boxes c that are adjacent to b. 
List 2 of a box b will be denoted by Vb. It consists of all boxes c that are children of the 

colleagues of the 6's parent and that are well separated from b. 
List 3 of a box b will be denoted by Wb. It is empty if b is a parent box. If b is childless, 

it consists of all descendants of 6's colleagues whose parent are adjacent to b but who are 
not adjacent to b themselves. Note that b is separated from each box c in Wb by a distance 
greater or equal to the length of the size of c. 

List 4 of a box b will be denoted by Xb. It consists of aU boxes c such that b 6 Wc. Note 
that all boxes in List 4 are childless and larger that b. 

List 5 of a box b will be denoted by Yb. It consists of all boxes c that are well separated 
from 6's parent. 

$6 will denote the p-term outgoing singular function expansion for the box 6. 
#6 will denote the p-term incoming singular function expansion for the box 6. 
T6 will denote the p-term incoming singular function expansion for the box 6 due to all 

particles in T(Vb). 

Ab will denote the p-term incoming singular function expansion for the box 6 due to all 
charges in T{Xb). 

*i(r) is the result of evaluation of the expansion $6 at a particle r G T(6). 
ab(r) wiU denote the potential at r e T(b) due to all particles in T(Ub). 
ßb{r) will denote the potential at r G T(6) due to all particles in T{Wb). 
76(r) will denote the potential at r S T(6) due to all particles in T(Yb). 
F{r) will denote the potential at r. 

AbtC will denote the translation operator {& p x p matrix) in the Theorem 3.2 for the 
boxes 6 and c such that 6 = Y^1'1'™1'™*) a^ c _ y(z,fci,Jfc2)_ 

-Bt,c will denote the translation operator (apxp matrix) in the Theorem 3 3 for the 
boxes 6 and c such that 6 = y('."»i."»2) a^ c _ yVMM), 

C6)C wiU denote the translation operator (& p x p matrix) in the Theorem 3.4 for the 
boxes 6 and c such that 6 = y('+i."»i.n>2) and c = y('.*i.*2). 

4.2    Informal Description of the Algorithm 

1. Create the adaptive quad-tree. Compute the outgoing and incoming singular functions 
for each box m the computational tree, by the means of the Theorem 2.11. 

2. For each childless box 6, the interactions between particles in T(b) and T(Ub) are 
evaluated directly. For each particle r € T(b) the result is ab{r). 
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3. For each childless box 6, form an outgoing singular function expansion $6 by the 
means of Theorem 3.1. For each parent box 6, use Theorem 3.2 to translate and 
merge the outgoing singular function expansions of its children into the outgoing 
singular function expansion $&. 

4. Use Theorem 3.3 to convert the outgoing singular expansion of each box in Vb into the 
incoming singular function expansion in the box b, adding the resulting expansions 
together to obtain Tb. 

5. Convert the potential of all particles in T{Xb) into a incoming singular function ex- 
pansion in the box b, adding the resulting expansions to obtain Ab. Add Ab to Tb. 

6. For each childless box 6, evaluate the potential ßb{r) due to all particles in T{Wb) by 
evaluating the outgoing singular function expansions $c for each box ceWb. 

7. Translate the incoming singular function expansion TB of 6's parent B to the box b 
by the means of Theorem 3.4. Add the resulting local expansion to Tb. 

8. For each childless box 6, evaluate the local expansion Tb at every particle r e b and 
add the result to ab(r) and ßb{r), obtaining the potential F(r) at r. 

4.3    Detailed Description of the Algorithm 

Step 1: Initialization 

Comment [ Set the order n of Legendre expansions, the number of terms p in all singular 
function expansions, and the maximum number s of the particles in a childless box. Create 
the computational tree. ] 

do / = 0,1,2,... 
do be Bi 

if b contains more than 5 particles then 
subdivide b into four smaller boxes, 
ignore empty boxes, add nonempty boxes to Bl+1. 

endif 
enddo 

enddo 

Comment [ For each box b in the computational tree, compute the outgoing and incoming 
singular value decompositions of the kernel K. ] 

do I = 0,1,2,... 
do b E Bi 

Se}, ,& =, Y{l'klM)-   Compute two singular value decompositions for x e 
j^(',*l,*2)j y e y(i,*i,*2). 
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K(x,y) = Suffix)-s$.vff(y), 
fc=i 

K(y,x) = J2u%k(y)-s%k-v™(x). 
k=i 

enddo 
enddo 

Step 2: Local Interactions 

Comment [ For each childless box b, evaluate interactions with the particles in T(Ub) 
directly, obtaining the potential due to nearby particles. ] 

do I = 0,1,2,... 
do b € Bi, b is childless 

do XiETity^jETiUb) 

c*b{xi) = ab(xi) + Y^Qj- K(xi,Xj). 

enddo 
enddo 

enddo 

Cost [ 9(N/s) -S-S + 8{N/s) -s-s operations. ] 

Step 3: Outgoing Singular Function Expansions 

Comment [ For each childless box b, form the outgoing singular function expansion $6. ] 

do 1 = 0,1,2,... 
do b € Bi, b is childless 

Evaluate the coefficients of the outgoing singular function expansion for the 
square b by the means of the Theorem 3.1., 

Xj€b 

for all k = l,...,p. 
enddo 

enddo 

17 



Cost [ Np operations. ] 

Step 4: Upward Sweep 

Comment [ For each parent box b, form the outgoing singular function expansion $6 by 
translating the outgoing singular function expansions of 6's children and adding the resulting 
expansions together. ] 

do/ = ...,2,l,0 
do b e Bi, b is a parent box 

Use Theorem 3.2 to translate and merge the outgoing singular function ex- 
pansions of b's children bu 62, 63, h into the outgoing singular function 
expansion $fc 

$6 = $& + AbM • $6l + AbM ■ $fc2 + AbM ■ $(,3 + Ab<b< • $64 

enddo 
enddo 

Cost [ (4/3)(7V/s) -p2 operations. 

Step 5: Adaptive Part 

Comment [ For each childless box b, form the incoming singular function expansion A6 
due to particles located in List 4 of 6. ] 

do/ = 0,1,2,... 
do b G Bi, b is childless 

Use Theorem 3.1 to evaluate the coefficients of the incoming singular function 
expansion Ab for the square b 

Xi€Xb 

for all k = 1... ,p. 
enddo 

enddo 

Cost [ 8{N/s) -p-s operations. ] 

Comment [ For each box b, evaluate the outgoing singular function expansion $6 at each 
particle located in boxes c in List 4 of b. ] 

do / = 0,1,2,... 
do b e Bi, b is childless 

do Xi G Xb 
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ßb{Xi) = ßb(Xi) + £ %k ■ s$ ■ uff(Xi) 
k=l 

enddo 
enddo 

enddo 

Cost[8(iV/s).p.soperationS- ] 

Step 6: Outgoing to Incoming 

expansions together. ] g     S       ^nCtl0n exPa^ion r6, adding the resulting 

do/= 0,1,2,... 
do 6 e 5/ 

Theorem 3.3  Idd th" rtuS ^Tf       ** b<* b by the means of 
AGO tne resulting singular function exoansin™ tn r. expansions to r& 

rfc = r6 + £ BbtC. *e. 
c€V(, 

Add F6 and A6 to obtain the incoming singular function expansion *fc 

enddo 
enddo 

Cost[27.(4/3)(AT/s).J32operations] 

Step 7: Downward Sweep 

do/= 0,1,2,... 
do b e Bi, b is a parent box 

do c €£,+1) eis a &'s child 

Ä A«",ChSS^CUOn eXPanSi0" *' * "» — - The- ua ine resting local expansion to #c 
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enddo 
enddo 

enddo 

Cost [ (4/3) (JV/s).j,2 operations. 

Step 8 

SrrenV[ I** rry dÜldleSS b°X *' ^Uate inCOminS sinSular function expansions *t at each particle, obtaining the potentia  ' - H^ions *4 

by adding o6(r), /?6(r), 7fc(r) together. 

o+ 0,„i,       x- i      , . .". w^a«; lix^xLuug singular lunctjoxx CAuausiun5 *k 

at each particle, obtaining the potential due to distant particles. Find the potential at r G 6 

do/= 0,1,2,... 
do 6 e 23;, 6 is childless 

For each particle Xj G 6, evaluate 

Jfc=l 

Add ab(Xj), ßb(xj), lb{Xj) to obtain the potential F(Xj) at ZJ e b 

F(Xj) = ab(xj) -f ßb{xj) + 76(Xj-). 

enddo 
enddo 

Cost [N -p operations. ] 

4.4    Complexity of the Algorithm 

Since s is the average number of particles in a childless box at the finest level  there are 
approximately N/s childless boxes, and approximately ' 

B = (l + l/4 + l/4» + ...).(JV/,) = |.^ (106) 

boxes in the tree hierarchy Therefore, Step 3 requires Np work, Step 4 requires A* work 
Step 6 requires 275p' work, Step 7 requires V work, Step 8 requires /Vp work LSten 

couTT 9-N/S'S-S = 9N* -rk- T^> a reasonable estimate for the total'oTeratS 

9Ns + 2Np + 29Bp2 = 9JV5 + 2JVr> + 29 • - • - . J 
3    s 

With s = 2p, the operation count becomes approximately 

40iVp. 

(107) 

(108) 
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enddo 
enddo 

enddo 

Cost [ 8{N/s) -p-s operations. ] 

Step 6: Outgoing to Incoming 

Comment [ For each box b, convert the outgoing singular function expansion $c for each 
box c in List 2 of 6, into the incoming singular function expansion Tb. adding the resulting 
expansions together. ] • o c 

do / = 0.1,2,... 
do b £ Bi 

For all boxes c e Vb, convert the outgoing singular function expansion into 
the incoming singular function expansion for the box b bv the means of 
Theorem 3.3. Add the resulting singular function expansions to Tb 

r6 = r6+£ß6iC.$c. 
cev6 

Add T6 and Afc to obtain the incoming singular function expansion $ 
b 

^b = rb~ Ah. 
enddo 

enddo 

Cost [ 27 ■ (4/3)(N/s) ■ p2 operations. ] 

Step 7: Downward Sweep 

?nTmZu l F°r 6Very PaJ6nt b°X *'tranSkte the inCOminS sil^lar function expansion *6 to b s children incoming singular function expansions. ] 

do/= 0,1,2,... 
do b £ Bi, b is a parent box 

do c € £j+1, c is a b's child 

Translate the incoming singular function expansion % by the means of The- 
orem 3.4. Add the resulting local expansion to #c 
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digits, we used 90-term singular function expansions, and obtained these (durin* the ore- 
computanon stage) by starting with Legendxe expansions of order 16 ° 

n   29nn°f tht I"digit 7i°Q fthe SCheme' the break-even Point with the direct scheme is 
111 /v!     1   TS'       break'even P°int is " ~ 800, and for 10-digits the scheme becomes faster than the direct one at n ~ 3000. 

3. The efficiency of the algorithm does not suffer significantly when the charges in the 
simulation are clustered. On the other hand, unlike its counterpart for harmonic kernels 

Z£:;t2:i£^?does not seem to derive any ad™tage ^ ^ *»***« 
4. The cost of the algorithm grows rapidly with the increase of accuracy requirements 

The algorithm is considerably slower than modern versions of the FMM for harmonic fields' 
especially in high-accuracy environments (see, for example, [10]). 

5.1    Generalizations and Conclusions 

The algorithm of this paper has an obvious analogue in three dimensions: quad-trees are 
replaced with oct-trees, two-dimensional expansions axe replaced with thrldLeL 0S 
ones and the programming becomes more involved. Such a scheme has been »S 
(see [6]), and found to work satisfactorily, as long as the required precision is low  Fofac u 

ÄSr^Sr f0Ur diSitS'the CPU tlme —Lf the three-dim^oTal 
For many kernels the algorithm of this paper can be accelerated via an approach similar 

to the one used by [4], [9], [10] to aocelerate the FMM for harmonic fields in two^n" 
hree dimensions.   Specifically, most the operators (70), (90), (98) can be diagonal 

this requires that the kernel K be approximated by linear combinations of exponential on 
appropriately chosen parts of the product yC*iA) x X«**>   Needless tn Z 7v 
not be done for a "general" kernel K; however, it appears to be po^fo■ ZytZ 
(and  lasses of kernels) of interest. Such a scheme would require several developments  both 

sT^antiv "af * T^ "t"* ** ^"^ ~*» <* *Ä£ sigmicantl     The real pay-off of such a project would be in three dimensions  where it 
would be likely to make large-scale high-precision simulations feasible. 
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The adaptive part of the algorithm in the Step 5 requires 0{8(N/s)ps - 8(X>'<)p^ = 
0(16Ap) work, and Step 3 requires additional 0{S(K/s)s*) = O(SNs) work "The tota' 
operation count is 

17Ns + 18A> -f 29V = l7Ns -r 18A> - 29(4/3)(A*/s)jr. (109) 

By setting s = 1.5p, the operation count becomes approximately 

69 Np. (110) 

5    Numerical Results 

A FORTRAN program has been written implementing the algorithm described in the 
preceding section. All timings listed below correspond to calculations performed on an 
LltraSparc-I/16, computer with 128MB RAM. using double precision arithmetic. The or- 
der of Legend« expansions was n = 4, n = 8, and n = 16 and the number of singular 
functions varied from p = 9 to p = 36 to p = 90 in order to achieve roughly 3. 6 and l" 
digits accuracy, respectively. ' 

The results of these experiments are presented in the tables below. The first column con- 
tains the number of particles used in the simulation. The second column contains the time 
for construction of the computational tree and precomputation of values singular functions 
at locations of particles. This can be done once for any given configuration of particles 
We do not include the time for precomputation of singular value decompositions in this 
column since this can be done in advance for any given kernel. The third column contains 
he total run time of the algorithm. The fourth and the fifth columns contain the actual 

STtV,  I ^r S°rithm and the Üme reqUired by the direct ^oritllm> respectively. 
error Enh,       A   7°        ^ ""^ ^ "^ ^^ & ^ the relative maximum error ix obtained at any one particle. They are defined by the formulae 

2    t TiUW   )    '   ^ = m^   Iff' (m) 
where fi is the value of the potential at the z-th particle position obtained by the direct 
calculation, and /, is the result obtained by the algorithm 

,m,™  Fe 1? S6t °f,teStS' lhB P°Siti0nS °f PartideS Were ******* distributed in the unit 
ZnTtwo ,r,      SeC0DAf °f teStS' tW° fifth °f Charged Partides Were dist"buted uniformly 
along t*o ellipses and the remaining of particles were distributed randomly in three cirdes 

Tot a36™ td the Therhr ofterin the sinsuiar ^ction ^^™t. 
respectivdy ^^ " * ChiWleSS b°X W3S Set to 15> 61> «* 153, 

Several observations can be made from Tables 1-12 below, and from the more extensive 
numerical experiments performed by the authors. extensive 

1. The number of singular functions required to obtain 3-digit accuracy is 9- the cor 
responding order of the Legendre expansions is 4.   The 6-oUgit schem^ecmres 36 term 
singular-function expansions, and Legendre expansions of order 8.  In orderTobtain l" 
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Figure 2: Non-uniform distribution of charges and its associated adaptive quad-tree. 
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Figure 1: The computational box and three levels of refinement. 
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Ar 
Tinit(s) ! TaiQ(s) ! Trun(s) 1 Tdir(s)  i 

200 0.007 0.009 0.015 0.019 
400 0.015 0.018 0.034 0.076 
800 0.024 0.047 0.071 0.310 

1600 0.062 0.089 0.151 1.344 
3200 0.105 0.213 0.318 5.371 
6400 0.266 0.399 0.666 21.783 

£2 
0.11770B-03 
0.27390E-03 
0.29473E-03 
0.39506E-03 
0.42503E-03 
0.49194E-03 

0.85266E-03 
0.19749E-02 
0.20307E-02 
0.36146E-02 
0.38485E-02 
0.43736E-02 

Table 1: Uniformly distributed particles. K(x,y) = l/\x - „,, s = 15> p = 9, and n = 4. 

N    Tinit(s) I Tnln(s) 
400 
800 

1600 
3200 
6400 

0.066 
0.124 
0.255 
0.492 
0.997 

0.042 
0.130 
0.251 
0.684 
1.230 

Tr*n(s) I Tdir(s~) 
0.107 
0.254 
0.505 
1.176 
2.227 

El 
0.075 
0.309 
1.347 
5.375 

21.756 

0.37968E-07 
0.30664E-07 
0.59016E-07 
0.67426E-07 
0.16065E-06 

0.36455E-06 
0.23301E-06 
0.63131E-06 
0.67145E-06 
0.16568E-05 

Table 2: Uniformly distributed particles. K{x,y) = i/|x - y|, , = 61> p = 36, and n = 

A^ Tinit(s) Talq{s) Trun(s) Tdir(s) 
800 0.832 0.213 1.045 0.316 

1600 1.625 0.580 2.205 1.342 
3200 3.210 1.374 4.515 5.371 
6400 6.301 3.138 9.438 21.798 

£2 
0.35519E-11 
0.27911E-11 
0.47909E-11 
0.40687E-11 

0.27597E-10 
0.23206E-10 
0.35374E-10 
0.47116E-10 

Table 3: Uniformly distributed particles. K(x, y) = l/|x -y\,s = 153, p = 90, and n = 16. 

200 
400 
800 

1600 
3200 
6400 

0.007 
0.015 
0.024 
0.063 
0.105 
0.267 

X I Tinit[s) I T^s) I T^(s) 
0.007 
0.016 
0.037 
0.077 
0.173 
0.353 

0.014 
0.031 
0.061 
0.140 
0.278 
0.619 

Tdir(s) 

0.014 
0.055 
0.227 
1.016 
4.064 

16.397 

£2 
0.33680E-06 
0.24487E-05 
0.75789E-05 
0.36380E-04 
0.10114E-03 
0.42311E-04 

0.11237E-02 
0.46567E-02 
0.67792E-02 
0.82441E-02 
0.11347E-01 
0.12510E-01 

Table 4: Uniformly distributed particles. *(*, y) = l/|x - y\*, s = 15, p = 9, and n = 4. 
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Figure 3: Box b and its associated Lists 1 to 4 for the charge distribution in Fimre 
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Ar 
Tinit(s) 1 TalQ(s) i Trun(s) 

800 0.826 0.180 1.006 
1600 1.597 0.450 2.047 
3200 3.205 1.217 4.422 
6400 6.315 2.507 8.823 

Tdir(s) 

0.231 
1.009 
4.104 

16.404 

Eh 
0.14987E-12 
0.32363E-12 
0.20036E-11 
0.46900E-12 

0.17505E-09 
0.74589E-10 
0.25330E-09 
0.16662E-09 

Table 6: Uniformly distributed particles. K(x,y) = l/\x-y\*, s = 153, p = 90; and n = 16. 

Figure 5: 
computational box. ÄLn0n'Uniformly diStribUt6d Particles "* the «sodated partition of the 
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Figure 4: Uniformly distributed particles and the associated 
box. partition of the computational 
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A^ Tinitis) Tai9(s) Trunis) Tdir(s) E2 -Eoo 400 0.065 0.033 0.099 0.055 0.33610&09 0.96336E-06 800 0.126 0.098 0.223 0.225 0.74619^09 0.55977E-06 1600 0.254 0.210 0.465 1.016 0.59034E-08 0.21584&05 3200 0.493 0.529 1.022 4.090 0.18124^07 0.17612E-05 6400 0.996 1.036 2.031 16.365 0.14692&07 0.47616E-05 

Table 5: Uniformly distributed particles. K(x,y) = l/\x - y[2y s = 61> p = 36j and n = g_ 
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400 

800 

1600 

3200 

6400 

A' I Tintt(S)   | Talg(S)   1 Trun(s)   iZZüi 
0.016 
0.029 
0.058 
0.115 
0.225 

0.023 
0.045 
0.100 
0.197 
0.382 

Eo 
0.039 
0.075 
0.158 
0.312 
0.608 

0.055 
0.226 
1.016 
4.064 

16.405 

0.44531E-04 
0.72969&04 
0.98016^04 
0.24054^03 
0.23213&03 

0.19765E-02 
0.37896E-02 
0.70910E-02 
0.57700E-02 
0.82506E-02 

™n ^°4
Highly non-uniformly distributed particles. K(x,y) = l/|x - y\\ s = 15. p = 9, 

N 
400 
800 

1600 
3200 
6400 

linit(s) I Tal0(s) 
0.065 
0.140 
0.265 
0.521 
1.043 

0.045 
0.108 
0.312 
0.639 
1.439 

Trun(s)    Tdlr(s) 
0.110 

0.247 

0.577 

1.160 

2.481 

0.054 

0.234 

1.016 

4.059 

16.408 

£2 
0.61825^08 
0.10608E>07 
0.13661^07 
0.38933E-07 
0.38956^07 

^00 

0.15019E-05 
0.20936E^05 
0.18906E>05 
0.21694E-05 
0.61407E-05 

Table n^Highly non-uniformly distributed particles. K(X, y) = i/,x _ y|2, s = 61, P = 36, 

N  I Timt(s) 
800 

1600 

3200 

6400 

0.805 

1.717 

3.338 

6.540 

TaiQ{s) 

0.192 
0.477 
1.352 
4.045 

0.996 
2.194 
4.691 

10.586 

Tdir(s) 

0.230 
1.010 
4.144 

16.411 

£2 
0.10539E-11 
0.68055E-12 
0.28719&11 
0.29936E-11 

0.41111E-09 
0.18332E-09 
0.39139E-09 
0.21587E-09 

Table ^Highly non-uuiformly distributed particles. *(*,„) = i/^.^p, , = 153j p = ^ 
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i    Ar Tinitis) ra/p(s) Trun{s) i   Tair(s)   |              E2 Ex 
200 0.008 0.010 0.019 0.019    0.13524E-03 0.87697E-03 , 
400 0.016 0.029 0.045 0.076 0.20754E-03 0.1146SE-02 ! 
800 0.029 0.058 0.087 0.309 0.26133E-03 0.12042E-02 ' 

1600 0.057 0.126 0.183 1.344 0.32551E-03 0.26410E-02 ! 
3200 0.114 0.245 0.358 5.368 0.37247E-03 0.34192E-02 
6400 0.224 0.475 0.699 21.788 0.42360E-03 ] 0.35911E-02 i 

Table 7: Highly non-uniformly distributed particles.  K{x.y) = l/\x - y\. s = 15 
and n = 4. 

o. p 9. 

N Tinitis) Talq(s) Trun(s) Tdir{s) 
400 0.065 0.060 0.125 0.076 
800 0.140 0.139 0.279 0.315 

1600 0.264 0.413 0.677 1.336 
3200 0.528 0.834 1.363 5.439 
6400 1.052 1.867 2.919 21.761 

0.59124E-07 
0.77114E-07 
0.10049E-06 
0.12151E-06 
0.15353E-06 

0.61426E-06 
0.11068E-05 
0.97051E-06 
0.12184E-05 
0.15668E-05 

Table 8: Highly non-uniformly distributed particles. K(x,y) = \/\x - v\  s = 61   D = 36 
and n = 8. ' F ■ 

N Tinit(s) Talqis) Trun(s) Tdir(s) E? Eoc 
800 0.805 0.250 1.055 0.314 0.40445E-11 0.87339E-10 

1600 1.716 0.603 2.319 1.338 0.61795E-11 0.75092E-10 
3200 3.334 1.769 5.103 5.442 0.88132E-11 0.85507E-10 
6400 6.540 5.366 11.906 21.810 0.11716E-10 0.12124E-09 

Table 9: Highly non-uniformly distributed particles. K(x,y) = l/|x - y|, , = 153, p = 90, 
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K- W(s) = I -mr-ait)dt- <13" 

K" W][s) = fp7„   a^,)'  ""'*' (»oi 

7      A ^ P'7o        cW(5)3      "0*^ (142) 

respectively. 

fl7rkn%4)  0hTSlyJ- the °Perat0rS K°A> Kl2' ***> K™ *™ bV *' formulae (137) 
13) 'ft    ^ the^r°°fthe °Pemt0rS K'°' «'S' *?'°> «? defined by (131) - (136) (139). Furthermore, K\\ defined by (138), is self-adjoint. h 

4    Proof of Results 

In this section we prove the results from Section 2.  The outline of this section is as follows- 
First, we consider the case where 7 is a circle.   We provide the proof for Theorem Tn 

ein; r   risTci^htT f0r,the 'T^ inteSral ™ (^4)     ^) for £ case were 7 is a circle.  Then, by combining Theorem 2.6 and Lemma 4.2  we immediatelv 

Iheore" «    ' ^ ^'^ ** "" «*««• <12> - C») on a circle. These ™d t 

Sincere Z^Z^S^Z 7 Inf SIary "'^ Sm°°th *»"" ""* 

Proo/ o/ Theorem 2.6 Since the proofs for the identities («.m    ^, i   -J     •   , 

of variables. We choose the parametrization * * "^ transformatio» 

7(t) = (cos(i),sin(i)), (143) 
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where t € [—n.~]. It immediately follows from (143) that 

f P*T{t){l{s)-h-N{8))   ik      _ 
I-* dN{t)2 e    dt- 

= fT 1 - 2 ■ (1 - /z) • cos(t - s) + (1 - h)2 ■ cos (2 (t-s))   ik, 

J-* (1 + (1 - A)2 - 2 • (1 - A) . cos(* - s))2 fiI ' A 

= elks ■ r 1 ~2" (l - h) ■ ™s(t) + (l-h)2-008(21)   ikt 

J-r d + (l-h)2-2.(l-h)-C0s(t))2 £ " (144) 

ÄLÄLWe wiU use calculus of residues to evaluate the integrai ^ T° ** 
Z = Pi{ 

e   ' (145) 
converts (144) into 

e«*' • r 1-2-(l-^)-cos(0 + (l-/l)2.Cosf2t)   ikt 
J-*      (l^(l-h)2-2-(l-h).cos(t))2      6    dt~ 

= eihs- f      Zi(1-(1-ÄH* + *_1) + £(l-/02(*2 + z-2)\     k 
J\z\=i  z   \        (1 + (i _ h)2 _ (1 _ Ä) (2 + 2_1))2        J ■ * ^ ,    (146) 

and after simple algebraic manipulation, .we get 

Zl A ~ (1 - A) (* + 2-1) + 1(1- h)2 (z2 + z-2)' 

*    V (l + (l-/l)2-(l-Ä)(z + 2-l)): r-n^        \-zk- 

1     f iz*+l izA-l 
2 I (d-ft)-z)2   (zd-^-ifj- (147) 

Substituting (147) into (146), we obtain 

fv d2%(t)(7(s)-h.N(s))   .k 

J-ir dN{t)2 e    dt = 

= eiks ■ f      I   I iz^ iz*-1        \ 
4|=i 2   \{{l-h)- zf     (Z(1_^_1)2J 

dz ■ (148) 

Now; formula (53) for r = 1 follows by applying a standard residue calculation to (148). D 

m1"^^1, FTfaS m ~ (52)' (5V ~ (WW^from well-known results (see for example [11, 3 ).  While the derivation of (53) - (56)   fiQ) - ffu) ,-. „„ •*     •   •,      ,.     '      ;    example 
find them in the literature. (   '     (H)     ^ ^^ tht authors ^ailed to 

a.sumeaTa.r1! T' "V^ *" ^ ^ ^ *?> *$* defi»ed * (134) - (141) 
rZ^™S!! f0rm °n the CirCle- The f0U0WinS l6mma **"» ^aWfrom 
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(d) 

(e) 

(!) 

(9) 

(h) 

(150) 

:ioi) 

152) 

Lemma 4.2 Suppose that 7 z5 a clTcle of radius r parametnzed by us arclenoth with extern- 
unit normal denoted by N.  Then: for any sufficiently smooth function c : [I- tr> f 

^ }.TT     2r  at--"°o-- (149) 

(b) K™(a)(s)    =   frr^-L- 1       ^     ,,... 

=   rr-^o + r^cr')^), 

(c) Kl-\a)[s)    =   fprM_ 3 \ 
P -U I   r3     2r3Cos(^)-2r3j a^* 

=    -2-r-2a0-3 7rr-1ff(a')(s); 

J — nr       tr 

*"<'>«    -   ^£2^^*.-.^,W. (153) 

^2'1(C7)(S)    =   f-P7l27^Ppi73^ = --1^')(5)!        (154) 

ir7°-2(a)(S) = fP r
r /"JL ...      i      \ ,, 7        U P'Lr ^r»+ i^ «*(*=*)-2r*j a^Ä 

=   *r->a0 +**(,')(,),        r (155) 

^•2(a)(5)    =   ^■£r
Tr^r^rZ2^^-^-^H(a')(s),       (156) 

V-rr ^   r3      2r3Cos(i=i)-2r37 aWdi 

=    ^Trr-^o-STrr-1^^)^), (157) 

where H denotes the Hubert transform (see (130) in Section 3.3). 

The following theorem is an immediate consequence of Theorem 9 fi »nA T , o    r 
summary the so-called jump conditions for thJ^TSHagf onlhT",       . where T is a circle. ^egrais ^izj - (29J on the boundary T, 

/or ^ sufficiently sll Ä ""]" f"       ^ ^^ W  ^ 

(158) 
(a) Kl^{a){s)    =    -7ra(S) + ^'V)(5), 
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(160) 

(1611 

fej 

ff) 

(164) 

(165) 

(166) 

(167) 

:i68) 

:i69) 

170) 

*7>X*)    =    ™(*)+Xjl0(a)(*), ;159 

K™(a)(s)    =    -7rr-1a(5)-^f(CT)(s); 

K*i(*)(s)    =   2nr-2a(s)~va"{s)^K^\a)(s). (i63) 

(d) <'!(a)(«)    =   **(*) +(*!.<>)»(,), 

(9) K°J(a)(s)    =   -Kr-'a^+K^iaHs), 

K%(c)(s)    =   *r-la{s)+K**{o){s)._ 

(h) K%{o)(s)    =   **''(*)+ (Ä*.1)>)(s), (171) 

<'2(CT)(S)    =    -ffa"(Ä) + (Ä?-i)V)(,)) (172) 

^ <'?(*)(*)    =   27rr-2a(5)-7rcr"(5) + (Ä-3.0)*(a)(fl)) 

^70;e(^)(5)    =    -27rr-2a(5) + 7ra"(S) + (Ä'3,o)*(a)(5)_ 

followirKPrOCef t0 the CT Wh6re 7 iS M arbitruy ^iently smooth Jordan curve   The 

sr^Ä Er can found in most elementary textbooks °n differentiai ~ 
Lemma 4.4 Suppose that 7 : [0,L] -> H2 i, fl 5^cien% smoo^ Jonfoil Cürue parame,merf 

W(      "IT? tke Tn°r Umt n0rmd and the unü **>*«« vectors at ^ZotlL 
A (5) and T(s)   respectively.  Then, there evst a positive real number a (dependent on")   and 

Z ~        ble functwns />5: (_a'a)- B (dependent Ä^£ 
7(. + t) - 7W = (t + t» . /(i)) . r(s) - (£|! + ,3 . ^ . „w f (i75) 

^^xai/r^-a^)r^'eB'c m (175) is the curvature °H at the p°mt *•>■ 
\f(t)\<\\1'"(s)\\, (176) 

ls(*)l<IIV"(*)||. (177) 

24 
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•   In Hhe l0Cal P^6"1^1011 (175)- the potential of a quadrupole located at ,(s) and oriented 
in the direction N(s) assumes a particularly simple form. glven by the following lemma. 

*y it* arclength.  Then, there exrst real posttive numbers A. a and h0 such that for any s ~ [0. L 

I dN(s -(- *)2 
/<2-f2 

c/zf2(5/r-f2) 
(*2-*2)2 (/i2 + i2; 

< .4 (ITS': 

iZntVisl ("G:G)-' ° - k < *°' ^ere *' COeffiCient d m (178) lS the a*™«»* of, at the 

s -Tf(n^
Utl°SS.^ g6I;erality' k 1S SUffident t0 Pr0ve the iemma for ^e case where 

J '= (Oil llobtat 7 (0) = (M)-  SUbSdtUtinS (175) *» W - — t^ result j 

ö2$7m(i 

dN(t)2 
Po(h.t) 

{h2Tt2^r{h,t)): (179) 

where p0. r : B2 -* R are functions given by the formulae 

Po(A.t)    = 

ci 

/,-^c^ + £|!_£^^3,f2(/(iH^_2f3(2/w_^ 

- V (/W + *9(t)) + A f3 (/'(0 - «/(*)) - ,4 (f,{t) _ g>{^ _ 3 f5 (f{t)2 + ^ 

~C-{ (/'(*) ~ *'(*)) ~ *6 fit) (f'(t) - g'(t)) - r6 g(t) (f'(t) + p'(t))" 

"^ (/(*) " 5p(t)) +h1*(f'(t) -g'(t)) + *<(/'(*) -,«/(*)) +3r5(/(*)2 + ^>2) 

(180) 

r(M)    =    -^«a-2A*»^) + ^ + 2^/W + c<*p(0+^(/W2 + ^- (181) 

We also introduce the notation 

«(*,«-(*»+<»+^M,)s-(fc. + «.)'.,(4»+^ .r(M)+r(M)2      (182) 

ormulae (180)    (182) immediately shows that there exist positive real numbers a, /.„, and 
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C (dependent on 7) such that 

jpo(M)-/i2-f*2-3c/it2j <   C{h2-t2)2. 

\po(hA).pi(h,t)-2cht2(h2~t2)(h2-t2)\ <   C{h2^t2Y 

Po(h:t).pi(h.t)2\ <   C{h2-t2f. 

Pi(h.t)   I .. 
(h2 + t*)2\ 

for all h<h0.te (-a, a). Substituting (182) into (179), we have 

d2$7(t)(*)    = po(h,t) 
M(t)2 (h2 + t2f(1   ,     Pi(h.t)   \ 

(183) 

(184) 

(185) 

(186) 

=      pp(h,t)     ~ Pl{hA)k 
(181 

where the convergence of the series follows from (186). Combining (183) - (185), we obtain 

!%^--^Z^_£^l(^i^)   < Po(h,t)-h> + 1>-3ch1*\ 
ÖA-(<)2        ^—^ 

|po(M'.Pi(A.t)-2c/it2(/i2 + r2) (/z2 - r2 
(hi + tiy 

(h* -t2)4 •E 
k=2 

Po(h.t)-Pl(h.t)k 

{h2+t2f*-2 

<    IC^C 
az 

1-a" 

with a defined by the formula 

a = sup 
/i</io, ££(-a,a) 

Pl(M 
(A2 + r2)' 

Now. introducing the notation 

A = 2C + C ■ 
a' 

1-a' 
we obtain (178). D 

Lemma 4.2 provides an explicit formula for the operator *T2<°   defined in 
case when 7 is a circle.  The following lemma shows that the operator K2» on 
sufficient^ smooth Jordan curve of length L, is a compact perturbation of *2 ° 
oi radius 53. Its proof is an immediate consequence of estimate (178) in Lemma 

Ä» its arclength, and that v : [0.1] - R2 rfenoies tte Clrde of mdms ^ ^ 

(188) 

(189) 

(190) 

(135), in the 
an arbitrary 
on the circle 
4.5. 

parametrized 
parametrized 
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(2)2       -v-;^--«2ia)(s). (191) 

(193) 

by itsardength. In addition, suppose that a : [O.I] ->R«« tozce «m«„U01w,v rftfC7WilflW. 
junction. Then. ' 

lp-Jo        dNW      °(t)* = i-P-J0   -——--•-:-'-: 

Wiere M2 : c[0. Lj -+ c[0, Zj is a compact operator defined by the formula 

M;     Jo   [     dN(ty- dN(t)i     ) a{t)dt- (192) 
Furthermore, for any t = s. 

m2(,.t)    =    2(A^),7(5)-7^))2      !   ,2ff.2 

Il7(5)-7(t)l!4 2 IT; 

Hs) ~ 7(OII2 2 (£)* (l-cos (¥(,-*))) 
and /or £ = s; 

mj(.,.)-i(e(.))'-^(^', (194) 

(l-Jt /°U°wmS the°Iem.Pr0V'deS the S°-Called jumP conditi™ fi" «" operators (14) and (lo) on the boundary r, when T is sufficiently smooth. 

Jt0r
a
e™enl ^T^ 7 : |0iM f' " « "*■■"«* S™<*  '^°» «™ ?—«-, 02/ its arclengtn.  Then, for any sufficiently smooth function a : [0, L] -> R, 

<>)(*)-*2;?(a)(5) = 

= lim /* ^*7M(^) + fe-^)) _ dHl{t)(7(a) _ A . A,(S))N 
^o70 ^ öiv(n)2 "        dNffi U(t)dt 

= -2TT c(s)a(s), W   l ;' (195) 
and 

0*)(*)+ *?>)(*) = 
= lim /* f^7(0(7W + ft-iyM)      52*7(0(7(5) - Ä • N(s))\ 

"-Wo   V 0tf(t)2 + ^p Ja(«) Ä 

-'■<*r3^.«>-. o        öiV(t)2      "V'«"' (196) 
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lZ7Pn\ deTS tv CUrVTe °f 7 at 7(S)-   IU °ther «"»*' the Wdruvle by* potenüal 
t r?Vl (See   6)J' Can bC COnt™°usly tended from fi to fi and from & \ Ö JJR" O 

with the limiting values given by the formulae 

7o       dN(W a(t)dt. [im dN{t)2 

#...(-)  - 0)W-.*).(.) + t^^^)4.       (198) 

Proof   Without loss of generality, we can assume that s ->■ f) anH c u r    «•   u    •    v 

ö^(')2 ' au®  (199) 

ÖJV(t)2 ^ öjv^)2 ' (200) 

and. substituting (199), (200) into (196), obtain the identity 

^>)(,)^^ 
Substituting (160), (161) in Theorem 4.3 into (201). we have 

K;i(a)(s)+K2
7%)(s) = 

~2'Lp-Jo        dN(t)*      a{t)dt + ^ol   &(^-Zh
v(s,t))a(t)dt. (202) 

Due to Lemma 4.5, there exist positive real constants C0, a, and h0 such that for any s € [0, L] 

|S;(*,*)-E;(«,*)|<C0, (203) 

for al^| t - s\ <a,0<h< h0. For any t ^ s and sufficiently small h, both Zh(s tf anH vVc ,> 
are c^-funct.ns.  Therefore, there also eX1St posltlve re/constants ^Ä f^ 

.   |E?(M)-E;(M)|<CI, (204) 

fnr f ' *~iS| ho?; ° ~Z1 < hv N0W' applyinS Lebe^e's dominated convergence theorem (^ 
for example, [18]) to the second integral of the right hand side of (202), we obtain 

=   Z   &(ET(*.*)-E}(5,0)<r(0«ft 

7o \   a^(«)2 äÄ^—J "(')*■ (205) 
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Wt Lemma 4(1696) lmmediately ^ ^ ^ ^^ °f ^ <*°5) **h W). 

H Z\TfS^hy proving formula (195)-We define the funcdons A- A*: [o- * x :o- *: - 
A*(5 *)    =    d2g>,(t)(7(s)^-A»)      ö^frM-A-.Yls)) 

ö^(*)2 äÄT(t)2 • (206-' 
A^(s.f)    =    ^„(pfote) + ^ • *(*))      g^mf.,,5) - /,. . Y,.^ 

<9A'W2 0^(7)2 • (207i 

and; by substituting (206). (207) into (195). obtain the identity 

(208) 
Substituting (160), (161) in Theorem 4.3 into (208), we get 

0")M - 0)(s) = 

= -J-cCW.) + lim £ (A?(S,() - uÜi_ . A},., «))<*)*.      (209) 

Due to Lemma 4.5, there exist positive real constants C„, a, and A„ suoh that for any s € (0, £J 

!A*(M,-£|M.A;(M)|£CO! (2IO) 

5 € [0,1] 

- Cl' (211) 
A;(^)-£^.A;(M) 

&r (**'•<> - ^ • *$<•.*>) *M* - lL
fe (A?(M) _ £^ . A;M ffWÄi 

Examining (206), (207), we obviously have (212) 

fö(A»(.,«)-£ÖjL£A.(.,())_0. (2i3) 

Therefore, the integral on «he right hand s.de of (212) is zero, from which (19Ö) fdlows imme- 
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5    Generalizations 

We have presented explicit (modulo an integral operator with a smooth kernel) formulae for 
mtegro-pseudodifferential operators of potential theory in two dimensions (up to order ?) The 
work presented here admits several obvious extensions. 

a. Formulae (89) - (107) have their counterparts for elliptic PDEs other than the Laolace 
equation. Indeed, for any elliptic PDE in two dimensions, the Greeks formula has the form 

G(x, y) = 6(x: y) ■ log(||x - y||) + ^(x, y), (214) 

with o. w& pair of smooth functions; derivations of Section 4 are almost unchanged when 
logdjx - y ,) is replaced with (214). In particular, the counterparts of the formulae (89) - (99< 

I*6,"0 eqUati°n (wi
r
th dther real 0r comPlex H^°^ coefficient) are identical to 

(89) - (99); the counterparts of the formulae (100) - (107) for the Helmholtz equation do not 
coincide with (100) - (107) exactly; instead, they assume the form 

(a) K™(c)(s)    =   -2-(c(s))2a(s)+A7rk2a(S)~7ra"(s)-2-c'(s)H(a)(s) 

-3*c(s)H{a')(s) + N3(a)(s), (2i5) 

Ky°e(°)(s)    =   ^(c{s)fcr(s)-4Kk2a(s)-Ko"{s)-2-Kc'{S)H(o){S) 

-3xc(s)H(G')(s) + N3(a)(s), (216) 

(b) K2:](a)(s)    =    -47rk2a(s)-ira"(s) + Kc'(s)H(a)(s) + iTc(s)H(a')(s) 
+G3{a){s), (217j 

K^(a)(s)    =   ^k2*(s) + ~a"(s) + Tc'(s)H(a)(s)+7;c(s)H(e')(s) 
+G3 (a)(5), (21g) 

(c) K\*{°)(s)    =   ^k2a(S) + na"(s) + 7rc(s)H(a')(s) + Gz(a)(S): (219) 

K^(a)(s)    =    -4irk2a(s)-rra"(s) + irc(s)H(a')(s) + G3(a)(s),            (220) 

(d) <-?(a)(«)    =   ^{c(s))\{s)-^k2a{s)-i:a"{S)-„d{s)H{cr){s) 

-Z*c(s)H{o')(s) + Nz{c){s), (221) 

K«%(c)(s)   =   -2^{c{s))2a(s)+A-Kk2a{s) + 7ra"{s)-7rc'{s)H{a){s) 

-Z*c{s)H(a'){s) + N3{a){s), (222) 

?eecromp€a«.1S ^ ^^ ^^ ^ ^ ^^ N>> °» *>> ^ : Z2[0, L) - L*[0, L] 

b The derivation of the three-dimensional counterparts of formulae (89) - (107) is comoletelv 

tr^T; SUCh eXPreSS10nS haVe b6en °btained' "* the P^U -porting tZ ist 
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1    Introduction 

Recent progress in the construction of "fast" methods for the solution of the 
boundary integral equations of scattering theory [1] has vastly increased the size 
of tractable problems [2, 3]; it has also increased the need for well-conditioned 
boundary integral formulations. There are two principal reasons for this: 

• Since we have sparse decompositions of the integral operators of scat- 
tering theory, but not their inverses, we employ iterative solvers. Well- 
conditioned systems of equations can be solved with few iterations. 

• Using a fine discretization to resolve source variations or geometric de- 
tail on a subwavelength scale results in an ill-conditioned linear equation. 
This is sometimes called the "low frequency" problem in computational 
electromagnetics. 

Only second-kind integral equations (see Appendix), or objects with similar 
spectral behavior (such as appropriately preconditioned differential equations) 
can be solved with fully controlled approximation error. The correct operators 
are the sum of a constant (or at least well-conditioned and easily invertible) 
operator and a compact operator. 

Boundary integral operators of scattering typically violate this requirement 
in one of three ways: 

• The spectrum may accumulate at zero. A typical example is the first-kind 
integral equation for the scalar Dirichlet problem (used for 2d electromag- 
netic scattering calculations in TM polarization), 

• the operator may have an unbounded spectrum, such as a pseudodifferen- 
tial or hypersingular operator, 

• the operator may have small eigenvalues associated with resonances, often 
unphysical; the latter are often referred to as "spurious resonances" (see, 
for example, [4]). 

For electromagnetic scattering from perfectly electrically conducting (PEC) 
surfaces, the standard boundary integral equations are the electric field integral 
equation (EFIE) 

-n x Ei = T3 (!) 

and the magnetic field integral equation (MFIE) 

ZnxH'=Q + A-)j, (2) 



where the integral operators T and K are denned (as in  [5]) by* 

TJ   =   T{k) 

=   ikn(x) x J^ ds' Ls(k, x, x') J(x) + -iV [VG(fc, x, x') • J(x')]} (3) 

K3    =    K(k)J = -n(x)x f ds'VG(k,x,x')xJ(x'), (4) 

where V denotes differentiation with respect to x, and n (x) is the unit normal 
to the surface at x. 

The MFIE is a second-kind integral equation. Unfortunately, this equation 
is suitable for an unacceptably small class of electromagnetic problems. It is 
inapplicable to open surfaces, becomes ill-conditioned in. the presence of geo- 
metric singularities, and suffers from spurious resonances. The EFIE has both 
a compact piece and a hypersingular piece (coming from the double gradient 
term). One can eliminate the spurious resonances of the MFIE by adding the 
EFIE to form a combined field integral equation (CFIE) [6]. The cost of do- 
ing so is the introduction of the EFIE's hypersingular piece, which spoils the 
conditioning for fine discretizations (or low frequencies). 

Adams and Brown [7, 8] and Kolm and Rokhlin [9] recently observed that 
a hypersingular integral operator and a first-kind integral operator are ideal 
preconditioners for each other, in the sense that the composition of the two has 
the spectral characteristics of a second-kind integral operator. In this letter, 
we show how the same approach can be employed to analytically precondition 
the EFIE. In fact (as was implicit in a result of Hsiao and Kleinman [5]), the 
electric field integral operator T preconditions itself. 

Two issues raised in [8] are important for the successful application of this 
idea to closed bodies. First, only the local (or short distance) behavior of 
the preconditioner is important for asymptotic conditioning. Thus, one can 
precondition the EFIE by multiplying it by an electric field integral operator 
corresponding to an arbitrary wavenumber, real or complex; if the wavenumber 
has a positive imaginary part, one avoids the introduction of any additional 
resonances. (Obviously, if the EFIE preconditioner reproduced the MFIE reso- 
nances, then the CFIE would also have them.) Second, one must take care that 
the discretization of the product of preconditioner and preconditioned operators 
preserves the correct spectral properties. 

In this letter we describe well-conditioned formulations for both open and 
closed surfaces. We also present numerical results for closed surfaces which 
demonstrate the advantages of the new CFIE formulation over the conventional 
CFIE. 

^ "The other terms follow the usual conventions: J = ZnxH is the unknown surface current, 
E1 and H' are the incident electric and magnetic fields, respectively, Z = y/(I/e is the wave 
impedance, and G(fc,x,x') = exp (tfcr)/4rrr is the 3d Helmholtz kernel with r = |x-x'| 
being the distance separating field and source points. Harmonic time dependence e~iut is 
assumed. 



2    Preconditioning the EFIE operator 

References [8] and [9] consider integral operators constructed from the kernel 
for the Laplace and Helmholtz equations in 2d. They observe that the prod- 
uct of a first-kind operator, constructed from an undifferentiated kernel, and a 
hypersingular operator, constructed from a twice differentiated kernel, has the 
desirable spectral characteristics of a second-kind operator. Since the EFIE in- 
tegral operator T has both of these, one might expect that the composition of 
two such operators T2 = ToT would include a constant operator and a compact 
operator. One might also worry that the product of hypersingular components 
would produce another hypersingular operator. It is easy to see, however, that 
the rotation operation nx in the definition (3) of T, which annihilates the com- 
ponent of the surface vector field normal to the surface, also ensures that the 
product of the two hypersingular operators is identically equal to zero. Indeed, 
applying the hypersingular component of the second T operator to an arbitrary 
tangential surface vector function f (x') produces a surface gradient function " 

nxVd>(x) = l(nx V) J ds' VG (jfc,x,x') ■ f (x') , (5) 

which the hypersingular component of the first T operator, in turn, annihilates 
(for closed surfaces) by virtue of the identity 

Vs-[nxV<£(x)] = 0, (6) 

with Vs denoting the surface gradient operator on 5; identity (6), the surface 
analog of the 3d identity V • [V x <f> (x)] = 0, can be found, for example, in [10], 
and is valid for any sufficiently smooth function <$> on S. It follows immediately 
from (3), (5), and (6) that T2 behaves as a second-kind integral operator. 

In this letter we investigate in detail the spectral properties of the EFIE 
and MFIE integral operators and combinations thereof for the PEC sphere, a 
simple 3d target for which the spectral properties of these operators are known 
analytically. A complete set of basis functions on the surface of a sphere of 
radius a is given by the vector spherical harmonics [11] 

^^^-j^nxVY^ie,?), (7) 

Vim (6, v)=nx Xim (6, tp), (8) 

defined here in terms of the scalar spherical harmonics Ylm (0,<p). 
The result of applying T and K+ = (K + \) to each basis function is+ [5] 

T (k) i Xlm \ - I ~h (*Q) ^ (fca) U<- \ ™ UlUim/-\    J{(*a)!5 (Jfco)X,m  / (9) 

fThe MFIE eigenvalues in [5] contain a sign error which is corrected here. 



and 

lUlmJ      1  -ih(ka)Ei(ka)Ulm /' . (10) 

where J, and Hj are Riccati-Bessel and (first-kind) Riccati-Hankel functions of 
order I, and k is the wavenumber associated with the kernel of each integral 
operator. The Riccati-Bessel and Riccati-Hankel functions are defined [12] in 
terms of spherical Bessel and Hankel functions j, (x) and h\l) (x) by 

h(x) = xjl(x), (H) 

El(x) = xh\l)(x). (12) 

Although our chosen basis functions X,m and U,m are not eigenfunctions of 
tne operator T (k), they are eigenfunctions of T2 (k) = T(k)oT (k): 

T2 {k) {vZ}= -J' W B, (ka) J{ (ka) 1% (ka) j *» j .        (13) 

The operator T2 (*) has a bounded spectrum, since, in the limit of large / 
its eigenvalues accumulate at -I (a result which follows from the asymptotic 
properties of j, and ^ given, for example, in [12]). However, as is evident 
from   10) and (13), the operator T2 (k) also shares resonances (at the zeros of 

?vi A AS 6 "" ?,°deS' and at the zeros of h ^ for the U<™ modes) with 
the MFIE operator K+(k). This fact is also evident from the identity 

T2(k) = K2(k)-l=K-(k)oK+(k), (14) 

(where AT- = K-\) derived in [5]. Therefore, although T2 (*) is a second-kind 
integral operator, it is not a suitable component of a resonance-free combined 
Held integral equation for closed bodies. 

As stated earlier, boundedness of the spectrum of the product of two EFIE 
operators (of the form (3)) is assured if they have the same short-distance be- 
havior, a condition that does not require the two operators to share the same 
wavenumber (propagation constant). If we choose EFIE operators with differ- 
ent wavenumbers, T (k,) and T(k2), we can simultaneously obtain a bounded 
product and avoid MFIE resonances. 

The following analysis indicates that ik is a particularly good choice for the 
wavenumber in the preconditioning operator (assuming that the wavenumber k 
is real). The eigensystem for T (ik) o T (k) on a sphere is 

T (ik) o T (k) I *lm  1 = - / J< (ika) E? (**<*) ^ (ka) Et (ka) Xlm  \      „ rX 
I UJm /        \ h(ika)El(ika)Fl(ka)El(ka)Vlm J"    (15) 

It is straightforward to show (given the properties [12] of j, and h™) that the 
eigenvalues of T (ik) o T (k) accumulate at { and -i for the X,m and U,w 



eigenmodes, respectively, and that T (ik) o T (k) does not share anv resonances 
with the MFIE operator K+(k). 

Since T (ik) o T (k) is a second-kind integral operator (in the sense described 
in the Appendix) and does not share any resonances with K+(k),we are finally 
in a position to write a well-conditioned CFIE operator. The simplest form of 
such an operator is 

T(ik)oT(k) + aK+(k), (16) 

where a is a constant to be chosen. In creating this CFIE operator we have 
preconditioned the EFIE part before adding to it the MFIE part (which is 
already a second-kind integral operator). The same applies to the excitation 
side of the equation. The resulting CFIE is 

-T (ik) (n x E*) + aZn x H!' = [T (ik) oT(k) + aK+(k)} 3 .       (17) 

The eigensystem for the CFIE operator (16) is 

[T(ik)oT(k) + aK+(k)]i £jj»  | 

[J{ (ika) M[ (ika) J, (ka) - ioj,' (ka)} H, (lea) Xlm  \ 
[Ii (ika) Ei (ika) J{ (ka) + iaSi (ka)] BJ (ka) Uim / ' (18) 

If one chooses a = ±1 then, as a function of the argument ka, these eigenvalues 
have no zeros. For a = +1, they circle the origin of the complex plane. 

Other well-conditioned CFIE operators can be devised, for example, by pre- 
conditioning the MFIE part before combining it with the preconditioned EFIE 
part. We have investigated two forms: 

T(ik)oT(k) + aK+(ik)oK+(k) (19) 

and 

T (ik) o T (k) + an x K+ (ik) o n x K+ (k). (20) 

Our experience shows the numerical behavior of all three CFIE formulations to 
be similar. 

We have proven the CFIE operators in (16), (19) and (20) to be second-kind 
and resonance-free for spheres. However, given that the asymptotic behavior of 
the eigenvalues on a smooth surface stems from the short distance behavior of 
the kernel, we argue (following the theorems proved in [9]) that the asymptotic 
behavior of the various operators on spheres should also obtain for any closed 
surface that can be obtained by smooth deformation of a sphere. The numerical 
results presented in Section 4 support this argument. We also present results for 
a cube, which, like many targets of practical interest, has geometric singularities. 
These results suggest that the new CFIE formulations should be well conditioned 
for a wide class of closed surfaces. 



3    A Different Form of the Preconditioned EFIE 
Operator 

There are several ways to produce a Nyström discretization of the product 
operator T (AJ o T (A2). The simplest and most straightforward approach, mul- 
tiplying the discretized representations of the individual operators, can lead to 
numerical difficulties. The reason is that it is relatively difficult to make the dis- 
cretized representations of the hypersingular part of each operator sufficiently 
accurate (especially for high-spatial-frequency eigenmodes) to numerically effect 
the cancellation that obtains analytically. 

Effective discretizations of T (k,) o T (k2) can be obtained either by discretiz- 
ing the product operator directly or by reformulating the product operator to 
eliminate the product of hypersingular operators. We have not implemented the 
first method because of the added complexity it entails. We have implemented 
the second approach using a reformulated product operator that eliminates all 
instances of hypersingular operators. A short derivation of the reformulated 
equation is given below. 

The first step toward obtaining a more useful form of the product opera- 
tor T{ki) °T{k2) is to separate each integral operator into its singular and 
hypersingular components. Introducing the abbreviations 

Ti=T(ki), (21) 
T2 = T(k2), (22) 

we write 

T^ik.Tf + i-T», (23) 

T2 = ik2T2
s + ±T«, (24) 

where 

T*3 = n(x) x J ds' G (km, x, x') J (x'), 

V) J ds' VG(km,x,x') 3 (x'). T»3 = n x  x 

(25) 

(26) 

The product operator 7\ o T2 can be expanded into four terms. Each of the two 
cross terms, TfoTf and T*oTi, can be transformed (by Stokes>s theorem) into 
the product of new, single-gradient integral operators on S plus a line integral 
around the boundary of 5. The term formed by the product of hypersingular 
integral operators, T? o T?, reduces to a Une integral. The result is further 
simplified by noticing that two of the three line integrals, when applied to J 
can be combined into a single term whose argument is identical to the incident 
electric field Es by virtue of (1). 

The next step is to reformulate the excitation side of the equation, taking 
advantage of the fact that the incident wave obeys Maxwell's equations.   By 



applying Stokes's theorem, we rewrite the term T? [n(x') x E!' (x')j as the sum 
of a single-gradient integral operator on V x E* (x') and a line integral that 
exactly cancels the line integral involving Ei on the other side of the equation. 
A further simplification follows from Faraday's Law, V x E = iufiH. 

The final result for the analytically preconditioned EFIE with reformulated 
integral operator product is 

= (|r° o T? + %Tf o T2
L - klk2Tf o Ti - |lf o I*) J, (27) 

where the various integral operators are defined by 

T> = n(x) x J ds' X7G(km,x,x')<t>(x'), (28) 

T%<p = n(x) x  f ds' n(x') x V'G(fcm,x,x')^(x'), (29) 
J s 

Tfc = j ds'VG(km,x,x').f(x'), (30) 

l£f = n(x) • J ds' VG (km, x, x') x f (x'), (31) 

T*f = n(x)x  f ds'G(km,x,x')f(x'), (32) 

T^4> = n{x)xj   dl'G(Am,x,x')0(x'), (33) 

with m = 1,2. Note that 7£, l£, and T% map scalar functions to surface 
vector functions, whereas 7* and T£ do the reverse. The operator on the right 
hand side of (27) maps surface vector functions into surface vector functions. 

In the remainder of this section we discuss closed surfaces and observe that 
Ti o T2 behaves like a second-kind integral operator. For open surfaces, the 
situation is somewhat more complicated in that additional analytical machin- 
ery is required to convert (27) into a second-kind integral operator. We have 
performed such analyses for the 2d and 3d scalar cases, and will report these 
results in the future. 

If S is a closed surface, the term Tf o T2
L J vanishes, and (27) simplifies to 

-ik.Tf (n x E<) - Z|TT (n • tf) = Sfo.fe) J, (34) 

where 

512 = 5(fcI,fc2) = |r-o^ + |rfor2
i-it1fc2rfor2

5.      (35) 

We note several features of S12. 



First, all of the individual integral operators that comprise 512 involve ker- 
nels with one or no gradients on the Helmholtz Green's function G. All such 
integral operators are bounded. 

Second, the eigenvalues of the integral operator Si2 do not accumulate at the 
origin. We will demonstrate this by examining its three components Tf o T2

T, 
r, o T2

L, and Tf o T/. The operator Tf o T2
T is a second-kind integral operator 

for the transverse (divergence-free) component of J, and is identically zero for 
the longitudinal (irrotational) component of J. Likewise, the operator rf o T2

L 

is a second-kind operator for the longitudinal component of J, and is identically 
zero for the transverse component of J. Since any surface current distribution 
can be decomposed into longitudinal and transverse components [11], the sum 
^Tf o r2

T + ^Tx o T2
L is a second-kind integral operator; subtracting kik2Tf o 

Tf, a compact operator, does not change this result. As observed in Section 2, 
we can avoid resonance sharing by setting kx = ik and k2 = jfc. In this case, the 
eigenvalues of S12 accumulate at two points, ±|, rather that at -±. 

Third, the spectrum of Si2, after discretization, is bounded and includes 
accumulation points at the expected locations. However, an accurate discretiza- 
tion will have zero (or very small) eigenvalues wherever the EFIE operator T (k2) 
has a resonance. Thus, it has to be combined with an appropriate discretization 
of the MFIE operator, to obtain an effective discretization of the CFIE. 

Finally, it should be noted that (34) is manifestly insusceptible to the "low- 
frequency" problem that plagues the EFIE. Since the well-conditioned behavior 
of 512 comes from the composite operators !j£T? o Tf and {p-lf o T2

L, both of 
whose prefactors have modulus unity (assuming |*i| = \k2\ = k), and since the 
termkiktT? o T/ tends to zero as k -» 0, the full operator 5i2 remains well 
conditioned in the limit of low frequency. 

In summary, although the operators TY o T2 and Sl2 have identical spectral 
properties for closed bodies, it is easier to construct an accurate Nyström dis- 
cretization for Si2 because it is composed of less singular integral operators. 
Matrix representations of Sn have bounded spectra, but also suffer from spuri- 
ous resonances inherited from the EFIE operator T(k2). These resonances can 
be eliminated by combining 512 with K+(k2) (or the modified MFIE operators 
in (19) and (20)). The result is a well-conditioned system of linear algebraic 
equations. 

4    Numerical Results 

In this section we compare the numerical performance of the conventional CFIE 
(referred to below as CFIE1) 

-n x (n x E{) + Zn x IT = [n x T (k) + K+{k)] 3 (36) 



with the preconditioned CFIE (CFIE2) 

kTs (ik) nxE" + iZTa (ik) nff-2nxH' 

= {i [-Ta (ik) o TT (k) + T* (ik) o TL (k) - k2Ts (ik) o Ts (k)] - K+(k)}3 
(37) 

produced by combining (17) (with a = -1) and (34) (with h = ik and k2 = k). 
We discretized the individual operators in these equations using a high-order 
Nyström scheme [13]. In all cases, the wave impedance Z was set to unity. 

We present three examples. The first example shows how the condition 
number of each operator, defined as the ratio of the largest to smallest singular 
values, depends on the fineness of discretization. Table 1 lists the condition 
number (CN) of the matrix representing each CFIE operator as the size of the 
sphere decreases. In all cases, the same discretization was used, created by 
placing a 6-point quadrature rule on each of the 80 nearly identical patches that 
cover the sphere, for a total of 960 unknowns. As the sphere radius decreases, 
the condition number for the CFIE2 integral operator stabilizes at about 2, 
whereas the condition number of the CFIEl integral operator continues to grow 
in inverse proportion to the radius. 

radius (A) CFIEl CFIE2 
1 4.2 3.04 

1/4 15 2.68 
1/16 59 2.04 
1/64 230 1.99 
1/256 940 1.97 
1/1024 3800 1.97 
1/4096 15000 1.97 

Table 1: Condition number of CFIE matrices for shrinking PEC spheres 

The second test compares iterative solver performance for the new CFIE and 
the conventional CFIE. The target geometry consists of two PEC spheres, one 
with a radius of A/2, the other set at a resonant radius, namely, the first zero 
of j; (2?rr/A) orr« 0.43667457 A. The spheres are separated by a A/100 gap. 
We subdivided the patches near the gap by a factor of about 10 to adequately 
resolve the currents, which vary rapidly there. Table 2 compares iteration counts 
and radar cross section (RCS) errors for several discretizations. The iterations 
columns list the maximum number of iterations a conjugate gradient squared 
(CGS) routine required to reach a residual error of 10"3. A solution computed 
from a substantially more refined discretization provided an accuracy reference. 
The stated error is the root mean squared (RMS) value of the difference between 
the monostatic <p4> RCS of the comparison solution and the reference solution at 
181 angles. For identical discretizations, the two methods had about the same 
error. The data show a dramatic difference, however, in the iteration count 
behavior of the two methods in response to discretization refinements. 



unknowns patches CFIE1 CFIE2 
iterations error iterations error 

1496 748 60 0.46 9 0.40 
4488 748 126 0.18 11 0.18 
996 498 44 0.61 9 0.48 

2988 498 103 0.23 12 0.16 
5976 498   163 0.016 11 0.029 

Table 2:   Iteration count and solution error vs.   discretization for two PEC 
spheres. 

The third test also compares iterative solver performance for the two CFIE 
formulations. In this case the target is a cube of size 1A. We present numerical 
results for five different discretizations, the first of which was derived from a 
mesh (i.e., a set of patches) obtained by dividing each face into four squares. 
The second mesh was constructed from the first one by subdividing each square 
into four smaller squares. The third mesh was constructed from the second 
by subdividing edge-touching patches in half along a line parallel to the edge; 
patches adjacent to two edges (i.e., corner patches) were divided into quarters! 
Meshes for the fourth and fifth discretizations were constructed by recursively 
applying the procedure by which the third mesh was constructed from the sec- 
ond. This process, known as patch tapering, is useful for resolving the source 
singularities that arise in the vicinity of geometric singularities. It also puts 
stress on the conventional CFIE because points near edges get close together. 
Table 3 lists the maximum and average number of iterations the CGS routine 
needed to obtain solutions for 92 independent excitations to a residual error of 
10 . The total number of unknowns is the Jesuit of using a 9-point quadrature 
rule on each square or rectangular patch. The iteration count for CFIE2 grows 
very slowly with increasing taper depth, whereas for CFIE1 it increases steadily, 
in accordance with expectations. 

unknowns taper CFIE1 CFIE2 
depth max ave max ave 

432 0 12 6.5 10 4.3 
1728 1 18 9.9 11 4.9 
3888 2 26 14 11 4.9 
6912 3 41 23 11 5.5 
10800 4 58 36 13 5.7 

Table 3: Iteration count vs. taper depth for 1A PEC cube. 
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5    Conclusions and Generalizations 

The classical electric field integral operator is its own perfect preconditioner, in 
the sense that applying it to both sides of the EFIE converts the latter into a 
second-kind integral equation. When the preconditioned electric field integral 
operator is used as a component of the CFIE, the latter is also converted into 
a second-kind integral equation. Furthermore, if the preconditioning electric 
field operator corresponds to a complex wavenumber, the resulting CFIE has 
no spurious resonances. 

In this paper, we describe in some detail an improved CFIE for electromag- 
netic scattering from perfectly conducting closed surfaces, leading to a signif- 
icant improvement in the performance of iterative solvers; incorporating the 
approach into the existing "fast" solvers is completely straightforward. The re- 
sults presented here admit generalizations in several directions. The extensions 
discussed below are currently under investigation, and will be reported at a later 
date. 

The approach of this paper can be applied, with minor modifications, to 
surface scattering with more general boundary conditions. The extension to an 
interface between two dielectrics, for example, is straightforward; the resulting 
operators have condition numbers that are in fact somewhat lower than in the 
case described here. While structures consisting of several dielectrics do not 
appear to present serious difficulties, places where several different dielectrics 
come in contact with each other require separate analytical treatment. 

The approach of this paper has to be modified only slightly in order to obtain 
second kind integral equations describing electromagnetic scattering from open 
perfectly conducting surfaces. In this environment, the CFIE is replaced with 
an appropriately preconditioned EFEE, and the edge of the surface requires 
separate treatment. The result is a pair of coupled integral equations, one on 
the surface itself, and the other on the edge of the surface (which is, obviously, 
a curve in R3). At this time, the theory has been constructed for the scalar case 
when the boundary of the surface is a sufficiently smooth curve; the analysis of 
open surfaces whose boundaries have corners is in progress. 

A    Appendix 

The standard definition of a second-kind integral operator is an operator of the 
form 

U + K, (38) 

where A is a constant, I is the identity, and K is a compact operator.   In 
scattering theory, one encounters operators of the form 

A1PI+A2P2 + ü:) (39) 
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where Ai and A2 are constants and Px and P2 are orthogonal projection operators 
such that 

Pi+P2 = L (40) 

Operators of the form (39) possess most of the desirable properties of second- 
kind integral operators. In a mild abuse of terminology, we refer to such expres- 
sions as second-kind integral operators throughout this letter. 
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Prolate Spheroidal Wave Functions, Quadrature, and 
Interpolation 

1    Introduction 

Numerical quadrature and interpolation are a well-developed part of numerical analvsis: 
polynomials are the classical tool for the design of such schemes. Conceptually speaking, 
one assumes that the function is well-approximated by expressions of the form 

n 

X>^J> (i) 

with reasonably small n, and designs algorithms that are effective for functions of the 
form (1) (needless to say, one almost never actually computes the coefficients {a,-}; one 
only uses the fact of their existence). Obviously, the polynomial approach is only effective 
for functions that are well-approximated by polynomials. 

When one has to handle functions that are well-behaved on the whole line (for ex- 
ample, in signal processing), polynomials are not an appropriate tool. In such cases, 
trigonometric polynomials are used; existing tools are very satisfactory for dealing with 
functions defined and well-behaved on the whole of R1. Such tools, in effect, make the 
assumption that the functions are band-limited or nearly so; a function / : R -> R is 
said to be band-limited if there exist a positive real c and a function a € L2[-l, 1] such 
that 

f(x)= f1 elcxt ait) dt. 
J — i (2) 

However, in many cases, we are confronted with band-limited functions defined on inter- 
vals (or, more generally, on compact regions in Rn). Wave phenomena are a rich source 
of such functions, both in the engineering and computational contexts; they are also 
encountered in fluid dynamics, signal processing, and many other areas. Often, such 
functions can be effectively approximated by polynomials via standard tools of classical 
analysis. However, even when such approximations are feasible, they are usually not 
optimal. Smooth periodic functions are a good illustration of this observation: while 
they can be approximated by polynomials (for example, via Chebyshev or Legendre 
expansions), they are more efficiently approximated by Fourier expansions, both for an- 
alytical and numerical purposes. It would appear that an approach explicitly based on 
trigonometric polynomials could be more efficient in dealing with band-limited functions. 

In the engineering context, such an apparatus was constructed more than 30 years 
ago (see [20]-[21], [7]-[9]). The natural tool for analyzing band-limited functions on R1 is 
the Fourier Transform, unless the functions are periodic, in which case the natural tool is 



the Fourier Series. The authors of [20]-[21] observe that for the analysis of band-limited 
functions on the interval, Prolate Spheroidal Wave Functions are likewise a natural ap- 
proach. The authors also construct a multidimensional version of the theory, though 
their apparatus is only complete for the case of spherical regions. 

The present paper constructs tools for the use of the approach of [20]-[21] in the 
modern computational environment. We construct a class of quadratures for band- 
limited functions that closely parallel the Gaussian quadratures for polynomials. The 
nodes are very close to being roots of appropriately chosen Prolate Spheroidal Wave 
Functions, the resulting quadratures are stable, and all weights are positive. As in the 
case of polynomials, there are interpolation, differentiation and indefinite integration 
schemes associated with the obtained quadratures, exact on certain classes of band- 
limited functions. These procedures are the main tools necessary for the numerical use 
of spectral discretizations based on Prolate Spheroidal Wave Functions, instead of on 
the usual polynomial bases. When dealing with band-limited functions, the number of 
nodes required by these procedures to obtain a prescribed accuracy is much less than 
that required by their polynomial-based counterparts. An additional bonus is the fact 
that the condition number of differentiation of prolate spheroidal wave functions is less 
than that of differentiation of the usual polynomial basis functions (see Section 8 below). 

This paper is organized as follows. Section 2 summarizes various standard mathemat- 
ical facts used in the remainder of the paper. Section 3 contains derivations of various 
results used in the algorithms described in later sections. Section 4 describes algorithms 
for evaluation of prolate spheroidal wave functions and associated eigenvalues. Section 5 
describes a construction of quadratures for band-limited functions. Section 6 describes 
an alternative approach to arriving at such quadratures; it shows that roots of appropri- 
ately chosen prolate spheroidal wave functions can serve as quadrature nodes. Section 7 
analyzes the use of prolate spheroidal wave functions for interpolation. Section 8 con- 
tains results of our numerical experiments with quadratures and interpolation. Section 9 
contains a number of miscellaneous properties of prolate spheroidal wave functions, and 
Section   10 contains generalizations and conclusions. 

2    Mathematical Preliminaries 

As a matter of convention, in this paper the norm of a function is, unless stated otherwise, 
its l? norm: 

= //i7t x)|2 dx. (3) 



2.1    Chebyshev systems 

Definition 2.1 A sequence of functions fa,..., <f>n will be referred to as a Chebvshev 
system on the interval [a, b] if each of them is continuous and the determinant 

°n{Xi)     •■■     (j)n{xn) 

is nonzero for any sequence of points xu...,xn such that a < xx < x2 ... < xn < b. 

An alternate definition of a Chebyshev system is that any linear combination of the 
functions with nonzero coefficients must have fewer than n zeros. 

Examples of Chebyshev and extended Chebyshev systems include the following (ad- 
ditional examples can be found in [11]). 

Example 2.1  The powers l,x,x2,... ,xn form an extended Chebyshev system on the 
interval (—oc. oc). 

Example 2.2  77« exponentials e~^, e"^,..., e"^ form an extended Chebyshev sys- 
tem for any A: An > 0 on the interval [0, oo). 

Example 2.3  The functions 1, cos x, sinx, cos 2x, sin 2a;,..., cos nx, sin nx form a Cheby- 
shev system on the interval [0,27r]. 

2.2    Generalized Gaussian quadratures 

A quadrature rule is an expression of the form 
n 

EU;°(^)- (5) 

where the points i^R and coefficients Wj € R are referred to as the nodes and weights 
of the quadrature, respectively. They serve as approximations to integrals of the form 

Ja <?{x)u{x) dx, ^ 

with u being an integrable non-negative function. 
Quadratures are typically chosen so that the quadrature (5) is equal to the desired 

integral (6) for some set of functions, commonly polynomials of some fixed order Of 
these, the classical Gaussian quadrature rules consist of n nodes and integrate polynomi- 
als of order 2n - 1 exactly. In [13], the notion of a Gaussian quadrature was generalized 
as follows: 



Definition 2.2 A quadrature formula will be referred to as Gaussian with respect to a 
set of 2n functions fa,..., fan '■ [a, b] -> R and a weight function u : [a, b] -> R+, if it 
consists of n weights and nodes, and integrates the functions fa exactly with the weight 
function u for alii = 1,..., In. The weights and nodes of a Gaussian quadrature will be 
referred to as Gaussian weights and nodes respectively. 

The following theorem appears to be due to Markov [14, 15]; proofs of it can also be 
found in [12] and [11] (in a somewhat different form). 

Theorem 2.1 Suppose that the functions fa,....fan '■ [a,b] ->• R form a Chebyshev 
system on [a,b]. Suppose in addition that u : [a,b] -> R is a non-negative integrable 
function [a, b] ->• R. Then there exists a unique Gaussian quadrature for the functions 
0i,..., fan on [a, b] with respect to the weight function u. The weights of this quadrature 
are positive. 

While the existence of Generalized Gaussian Quadratures was observed more than 
100 years ago, the constructions found in [14, 15], [6, 12], [10, 11] do not easily yield 
numerical algorithms for the design of such quadrature formulae; such algorithms have 
been constructed recently (see [13, 25, 2]). 

Remark 2.1 It might be worthwhile to observe here that when a Generalized Gaussian 
quadrature is to be constructed, the determination of its nodes tends to be the critical 
step (though the procedure of [13, 25, 2] determines the nodes and weights simultane- 
ously). Indeed, once the nodes x1; x2,..., xn have been found, the weights wi,W2,...,wn 

can be determined easily as the solution of the n x n system of linear equations 

2_, Wj ■ fa{xj) = /   fa(x) dx, (7) 
j=i Ja 

with i = 1,2,... ,n. 

2.3    Legendre Polynomials 

In agreement with standard practice, we will be denoting by Pn the classical Legendre 
polynomials, defined by the three-term recursion 

P^W = 2irTxP»w ~P..I(I), (8) 
n ■+■ i Ti-l-l 

with the initial conditions 

Po(x)   =   1, (9) 

Pi(x)   =   x- 



as is well-known, 

p*(!) = 1 (10) 

for all k = 0,1, 2,..., and each of the polynomials Pk satisfies the differential equation 

,.       2N d2Pk(x)     n   dPk(x) 

The polynomials defined by the formulae (8),(9) are orthogonal on the interval [-1,1]; 
however, they are not orthonormal. since for each n > 0, 

the normalized version of the Legendre polynomials will be denoted by P^, so that 

K(x) = Pn(x) ■ Jn + I/2. (13) 

The following lemma follows immediately from the Cauchy-Schwartz inequality and from 
the orthogonality of the Legendre polynomials on the interval [-1,1]: 

Lemma 2.2 For all integer k > n, 

i: xk Pn(x) dx 

For all integer 0 < k < n, 

< 
2 

k + 1 (14) 

J_   xkPn{x) dx =0. (15) 

2.4    Convolutional Volterra Equations 

A convolutional Volterra equation of the second kind is an expression of the form 

<p(x) = j K(x- t) <p(t) dt + a{x) (16) 

where a, b are a pair of numbers such that a < b, the functions a, K : [a, b] -»• C are 
square-integrable, and <p : [a, b] -> C is the function to be determined. Proofs of the 
following theorem can be found in [4], as well as in many other sources. 

Theorem 2.3 The equation (16) always has a unique solution on the interval [a,b]. If 
both functions K,a are k times continuously differentiable, the solution <p is also k times 
continuously differentiable. 



2.5    Prolate Spheroidal Wave Functions 

In this subsection, we summarize certain facts about the Prolate Spheroidal Wave Func- 
tions. Unless stated otherwise, all these facts can be found in [20, 17]. 

Given a real c> 0, we will denote by Fc the operator L2[-l, 1] -> L2[-l, 1] defined 
by the formula 

Fe(<p)(x) = f\iext<p(t)dt. (17) 

Obviously, Fc is compact; we will denote by A0, A1(..., An,... the eigenvalues of Fc 

ordered so that |Aj-_!| > |Aj| for all natural j. For each non-negative integer j, we will 
denote by fy the eigenfunctions corresponding to A;-, so that 

\jipj(x) = j\icxtfa(t)dt, (18) 

for all x 6 [-1,1]; we adopt the convention that the functions are normalized such that 
H^jlU2[-i,i] = 1, for all j.1 The following theorem is a combination of several lemmas 
from [20],[6],[11]. 

Theorem 2.4 For any positive real c, the eigenfunctions fa, fa,..., of the operator Fc 

are purely real, are orthonormal, and are complete in L2[-l,l}. The even-numbered 
eigenfunctions are even, and the odd-numbered ones are odd. All eigenvalues of Fc 

are non-zero and simple; the even-numbered eigenvalues are purely real, and the odd- 
numbered ones are purely imaginary; in particular, A, = ij\\j\. The functions fa consti- 
tute a Chebychev system on the interval [-1,1]; in particular, the function fa has exactly 
i zeroes on that interval, for any i = 0,1,...,. 

We will define the self-adjoint operator Qc: L
2[-l,l]-> L2[-l, 1] by the formula 

n .  »      If1 sin(c -(x-t))    . .   , 
°'M°;y-,    x-t    ^t)dt' <19) 

a simple calculation shows that 

Q'm S • F= ■ F« (20) 

that Qc has the same eigenfunctions as Fc, and that the j-th (in descending order) 
eigenvalue ^ of Qc is connected with Xj by the formula 

^ = ^-|A;|
2. (21) 

This convention differs from that used in [20]; however, the present paper is concerned almost 
exclusively with approximation of functions on [-1,1], and in that context, the convention that the 
functions {ipj} have unit norm on that interval is by far the most convenient. 



The operator Qc is obviously closely related to the operator Pc : L2[-cc, oc] -> [-oc. oc] 
defined by the formula 

( v      1     f°° sin(c ■ (x - t)) 

■n   J-oo        x -t w (22) 

which, as is well known, is the orthogonal projection operator onto the space of functions 
of band limit c on (-oc, oo). 

For large c, the spectrum of Qc consists of three parts: about 2c/vr eigenvalues that 
are very close to 1, followed by order log(c) eigenvalues which decay exponentially from 1 
to nearly 0; the remaining eigenvalues are all very close to zero. The following theorem, 
proven (in a slightly different form) in [19], describes the spectrum of Qc more precisely 

Theorem 2.5 For any positive real c and 0 < a < 1 the number N of eigenvalues of 
the operator Qc that are greater than a satisfies the inequality 

2c     / l        l-a\ 
7 +{*>Iog ~ir)log(c) ■10'log(c) <N< (23) 
2c     / 1        1 - a\ 
7 + felog ~cT)log(c) +10'log(c)- 

By a remarkable coincidence, the eigenfunctions ip0, fa, ■ ■ ■, ^n of the operator Qc turn 
out to be the Prolate Spheroidal Wave functions, well-known from classical Mathematical 
Physics (see, for example, [16]). The following theorem formalizes this statement; it is 
proven in a considerably more general form in [21]. 

Theorem 2.6 For any c> 0, there exists a strictly increasing sequence of positive real 
numbers xo, Xi, ■ ■ ■ such that for each j > 0, the differential equation 

(1 - x2) r{x) - 2x tf{x) + (xj ~ c2 x2) r/,(x) = 0 (24) 

has a solution that is continuous on the interval [-1,1]. For each j > 0, the function fa 
(defined in Theorem 24) is the solution of (24). 

3    Analytical Apparatus 

3.1    Prolate Series 

Since the functions ^o, fa, ■ ■ ■, fa, ■.. are a complete orthonormal basis in L2[-l, 1], any 
formula for the inner product of prolate spheroidal wave functions with another function 
/ is also a formula for the coefficients of an expansion of / into prolate spheroidal func- 
tions (which we will refer to as the prolate expansion of /). Thus the following theorem 



provides the coefficients of the prolate expansion of the derivative of a prolate spheroidal 
function, and also the coefficients of the prolate expansion of a prolate spheroidal wave 
function multiplied by x. Those coefficients are also the entries of the matrix for differen- 
tiation of a prolate expansion (producing another prolate expansion), and the entries of 
the matrix for multiplication of a prolate expansion by x, respectively. (These formulae 
are not, however, suitable for producing such matrices numerically, since in many cases 
they exhibit catastrophic cancellation.) 

Theorem 3.1 Suppose that c is real and positive, and that the integers m and n are 
non-negative. Ifm — n (mod 2), then 

J_^ i>'n{x) i}m{x) dx = I  xipn(x) ij,m{x) dx = 0. (25) 

Ifm^n (mod2); then 

f   rl>'n(x)r/,m(x)dx   =   -i^!L_^m(i)^(i)> (26) 

£ix^n(x)i;m(x)dx   =   l^L-Mi)7l,n{1)m (27) 
m   '      n 

Proof. Since the functions ty are alternately even and odd, (25) is obvious. In order to 
prove (26), we start with the identity 

Xn1pn = \_^iCXt 1pn{t) dt (28) 

(see (18) in Subsection 2.5). Differentiating (28) with respect to x, we obtain 

Kip'nix) = icf^telcxt^n{t) dt. (29) 

Projecting both sides of (29) on ^m and using the identity (28) (with n replaced with 
m) again, we have 

An /   ip'n(x) Tjjm{x) dx 
J — 1 

= icj_^m(x)l_teicxtipn(t)dtdx 

= icj_^tibn{t) J' eicxti>m{x) dxdt 

=   icXrn Jtrj;n(t)iJ;m(t) dt. (30) 



Obviously, the above calculation can be repeated with m and n exchanged, yielding the 
identity 

xmJ^ip'mix)ipn(x) dx = ic\nj^ tipn{t)%j)m{t) dt: (31) 

combining (30) with (31). we have 

rl A2   rl 

/    ■VmWMx) dx = -f /   ipm(x)^n(x) dx. (32) 
■>-l Am J-i 

On the other hand, integrating the left side of (32) by parts, we have 

/   tp'm(x)ipn(x) dx 
J — 1 

=   ^m(l)^„(l)  -  ipm(-l) M-l)  ~ f_ip'n{x)il;m{x)dx. (33) 

Since m^n (mod 2), we rewrite (33) as 

/     1>'mfa) 1pn(x) dx 
J — 1 

=   2if>m(l)rl>n(l)- £i€(x)1>m(x) dx. 

Now, combining (32) and (34) and rearranging terms, we get 

£ 1/n(x) Mx) dx = ^L_ Ml) ^n(1). 

Substituting (30) into (35), we get 

J_ x^n{x)il)m{x) dx 

1  An    r1 

=     ZT~ ^nW^mW dx 
4C  Am   J-I 

(34) 

(35) 

^   An       2 A_ 
«1)^„(1) ic Am A^ + A2 

L       AmAn . 
~A2        A2^m(l)V>n(l)- (36) 

m   '   'vn 

D 

The following corollary, which is an immediate consequence of (32), finds use in the 
numerical evaluation of the eigenvalues {A.,}: 



Corollary 3.2 Suppose that c is real and positive, and that the integers m and n are 
non-negative. Ifm^n (mod2), then 

A2        /   ÄWiW dx 
"m     J — \  

A"       f1 iP'm(x)ipn(x)dx 
(37) 

3.2    Decay of Legendre Coefficients of Prolate Spheroidal Wave- 
functions 

Since each of the functions ipj is analytic on C, on the interval [-1,1] it can be expanded 
in a Legendre series of the form 

M*) = £ ßkPt(x), 
k=0 

(38) 

with the coefficients ßk decaying superalgebraically; the following two theorems establish 
bounds for the decay rate. 

Lemma 3.3 Let Pn(x) be the n-th normalized Legendre polynomial (defined in (13)). 
Then for any real a, 

f1 eiaxP~n{x)dx 
J — \ 

=    £ ak /   x2k Pn{x) dx + i^ßk      x2k+1 K(x) dx. 
k=k* •/_1 u-u.        J-l k=ko k=ko 

where 

c*k = (-iY 

ßk = (-1)' 

,2* 

(2A)!' 
a 2k+l 

(2Ä + 1)!' 
k0   =   [n/2\ . 

Furthermore, for all integer m > [e ■ |a|J + 1, 

m-1 

(39) 

(40) 

(41) 

(42) 

fl eia*Pn(x) dx - £ ak I" x2kK(x) dx 
J~l k=k0       

J~l 

-*■£&/ x*+iK(x)dx <r-) . 
k=k0        J~1 ^' 

(43) 
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In particular, if 

rc>2(|e-|a|J+l), (44) 

then 

y^e-'Pntodz^y       . (45) 

Proof. The formula (39) follows immediately from Lemma 2.2 and Taylor's expansion 
of emx.    In order to prove (43), we assume that m is an integer such that 

m > [e ■ |o|J + 1. (46) 

Introducing the notation 

Rm =  £ *k /     X2k Pn{x) dx + ifsßk X2k+1 K(X) dx, 

we immediately observe that, due to Lemma 2.2 and the triangle inequality, 

\k        l     Ö" 

(47) 

\Rm\     <       £ a 

^   \a\k 

<    22jT- (48) 
fc=2m   ^ • 

Since (46) implies that 

\a\ \a\       1       1 
2m + k <2m<Te<? (49) 

for all integer m, k > 0, we rewrite (48) as 

|a|2m     /       1     1 

'*■'   K  ^ÜV.-{1 + 2 + 4+- 
|a|2m 

<   2 
(2m)! ' (5°) 

and obtain (43) immediately using Stirling's formula. Finally, we obtain (45) by choosing 

m=[e-\a\\+l. (51) 

D 
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Theorem 3.4 Let ipm(x) be the m-th prolate spheroidal function with band limit c, let 
Pk(x) be the k-th normalized Legendre polynomial (defined in (13)), and let Am be the 
eigenvalue which corresponds to ij)m{x) (as in Theorem 2.4). Then for all integer m > 0 
and all real positive c, if 

k>2([e-c\+l), 

then 

-l 
ipm{x)Pk(x) dx 

< £ . 

Moreover, given any e > 0, if 

*>2(Le-cJ+l)+log2(i)+log2(i), 

then 

f   ^m{x)Tk{x) dx 

Proof. Obviously 

/    ipm(x)Pk~(x) dx 
J — 1 

<     JXj   j\^rn(x)\-\j\icXtTk(t)dt\dx. 

Introducing the notation 

a — ex, 

and remembering that 

J   \ij)m{x)\dx = \, 

we observe that the combination of (56), (57), (58), and Lemma 3.3 implies that 

/   xl)m{x) Pk{x) dx 
J — \ 

/    \ibm{x)\dx 
J •— 1 

< 
|Am|    \2t 

1     (]^k~l 

|Am|  V2, 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

Substituting (54) into (53), we immediately see (55). 

(59) 

D 
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4    Numerical Evaluation of Prolate Spheroidal Wave- 
functions 

Both the classical Bouwkamp algorithm (see, for example, [1]) for the evaluation of the 
functions ipj, and the algorithm presented in this paper for the same task, are based on 
the expression of those functions as a Legendre series of the form 

Mx) = E ^kPk(x): (60) 
k=0 

since the functions ipj are smooth, the coefficients ak decay superalgebraically (with 
bounds for that decay being given in Theorem 3.4). Substituting (60) into (24), and 
using (8) and (11), we obtain the well-known three-term recursion 

(k + 2)(k+l)      2 
c -afc+2 + 

(2A; + 3)(2Jfc + 5] 

'k(k + l)+,*k{k+}l-\.c>-Xj).«k+ (61) 

k(k - 1, , 
{2k + 3)(2k-l) 

c2 • a*_2 = 0. 
(2*-3)(2fc-l) 

Combining (61) with (13), we obtain the three-term recursion 

 (* + 2)(* + l) 
c      Pit+2 + 

{2k + 3)y/{2k + 5)(2k + l] 

(*(fc+i^^^£:V^-^)^+ (62) 

 *(*-D .C2.,i     =0 

(2Ä-l)^/(2fc-3)(2Ä; + l) * 2 

for the coefficients $,#,... of the expansion 

tf;(*) = £$■:?£(*); (63) 

for each j = 0,1,2,..., we will denote by fi the vector in I2 defined by the formula 

ßj = (ßlßißL...)- (64) 

The following theorem restates the recursion (62) in a slightly different form. 
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Theorem 4.1 The coefficients Xi are the eigenvalues and the vectors ß{ are the corre- 
sponding eigenvectors of the operator I2 -> I2 represented by the symmetric matrix A 
given by the formulae 

A UL^,\ ,     2fc(* + l)-l       2 

(2Ä + 3)(2Ar- 1) 
(k + 2)(k + l) ,2 i*,*+2   = , ■ c, (66) 

(2/c + 3)^/(2*+ 1)(2A +5) 

4 (fe + 2)(fc + l) ■     2 

(2fc +3)^/(2*+ l)(2ifc +5) l    J 

/or all k = 0,1,2,..., iw'iA tfie remainder of the entries of the matrix being zero. 

In other words, the recursion (62) can be rewritten in the form 

(A-XJ-1)^ = 0, (68) 

where A is separable into two symmetric tridiagonal matrices Aeven and Aodd, the first 
consisting of the elements of A with even-numbered rows and columns and the second 
consisting of the elements of A with odd-numbered rows and columns. While these two 
matrices are infinite, and their entries do not decay much with increasing row or column 
number, the eigenvectors {/?'} of interest (those corresponding to the first m prolate 
spheroidal functions) lie almost entirely in the leading rows and columns of the matrices 
(as shown by Theorem 3.4). Thus the evaluation of prolate spheroidal functions can be 
performed by the following procedure: 

• 1. Generate the leading k rows and columns of A, where k is given by (54). 

• 2. Split the generated portion of A into ^even and 40dd, and use a solver for the 
symmetric tridiagonal eigenproblem (such as that in LAPACK) to compute their 
eigenvectors {ßJ} and eigenvalues {XJ}. 

• 3. Use the obtained values of the coefficients ßJ
0, ß{, ß{,... in the expansion (63) to 

evaluate the function ipj at arbitrary points on the interval [-1,1]. 

Obviously steps 1 and 2 can be performed as a precomputation, for any given value of 
c. As a numerical diagonalization of a positive definite tridiagonal matrix with well- 
separated eigenvalues, this precomputation stage is numerically robust and efficient, 
requiring 0{cm) operations to construct the Legendre expansions of the form (64) for the 
first m prolate spheroidal functions; each subsequent evaluation of a prolate spheroidal 
function takes 0(c) operations. 
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4.1    Numerical Evaluation of Eigenvalues 
Although the above algorithm for the evaluation of prolate spheroidal wave functions also 
produces the eigenvalues {XJ} of the differential operator (24). it does not produce the 
eigenvalues {A.,} of the integral operator Fc (defined in (17)). Some of those eigenvalues 
can be computed using the formula 

XjVj{x)= f  elcxtipj{t) dt, 
J — x 

(69) 

evaluating the integral on the right hand side numerically; however, that evaluation 
obviously has a condition number of about 1/Xj, and is thus inappropriate for computing 
small Xj. A well-conditioned procedure is as follows: 

• 1. Use (69) to calculate A0, evaluating the right hand side numerically, and with 
x = 0 (so that v0{x) is not small). 

• 2. Use the calculated A0, together with Corollary 3.2, to compute the absolute val- 
ues |Ajj. for j = 1.2,..., m, computing each |Aj| from |Aj_i| (and again, evaluating 
the required integrals numerically). 

• 3. Use the fact that A, = P\Xj\ (see Theorem 2.4) to finish the computation. 

5    Quadratures for Band-Limited Functions 

Since the prolate spheroidal wave functions ip0,ipu ■ ■■ ,ipn, ■ ■ ■ constitute a complete or- 
thonormal basis in L2[-l, 1] (see Theorem 2.4), 

^^tif elcxr^(r)dr)^(t), (70) 

for all x,t e [-1.1]: substituting (18) into (70) yields 

cta' = EWs)lfc(*), (71) 

Thus if a quadrature integrates exactly the first n eigenfunctions, that is, if 

22vkVj{xk)=       ipj(x) dx, (72) 
fc=i J~1 
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for all j - 0,1,..., n-1, then the error of the quadrature when applied to a function 
f{x) = elcax, with a € [-1,1], is given by 

dx 

J2wk   Z>j^(a)^(zA) 
A=I \j=o 

k=l \j=n 

Due to the orthonormality of the functions {^;}, 
00 

dx 

dx. 

j=n N EW 
j=n 

(73) 

(74) 

From (74), it is obvious that the error of integration (73) is of roughly the same mag- 
nitude as An, provided that n is in the range where the eigenvalues {A;} are decreasing 
exponentially (as is the case for quadratures of any useful accuracy; see Theorem 2.5) 
and provided in addition that the weights {wk} are not large. 

Now, the existence of an n/2-point quadrature that is exact for the first n Prolate 
Spheriodal Wave functions follows from the combination of Theorems 2.1, 2.4; an al- 
gorithm for the numerical evaluation of nodes and weights of such quadratures' can be 
found in [2]. An alternative procedure for the construction of quadrature formulae for 
band-limited functions (leading to slightly different nodes and weights) is described in 
the following section; a numerical comparison of the two can be found in Section 8 below. 

Remark 5.1 The above text considers only the error of integration of a single exponen- 
tial. For a band-limited function g : [-1,1] -► <D given by the formula 

rl    _ 

(75) 9{x. = /-,G« 
.icxt dt. 

for some function G : [-1,1] -+ C, the error is obviously bounded by the formula 

2Z wkg(xk) - /   g(x) dx 
k=i J-^ 

< HIGH, (76) 

where e is the maximum error of integration (73) of a single exponential, for any t e 
[-1,1]. While ||G|| might be much larger than |M|hu] (as it is if, for instance, g = ip30.n), 
if the same equation (75) is used to extend g to the rest of the real line, then by Parseval's 
formula ||G|| = UsH^«,^); that is to say, although the error of such a quadrature when 
applied to a band-limited function is not bounded proportional to the norm of that 
function on the interval of integration, it is bounded proportional to the norm of that 
function on the entire real line. 
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6    Quadrature Nodes from Roots of Prolate Func- 
tions 

An alternative to the approach of the previous section is to use roots of appropriate 
prolate spheroidal wave functions as quadrature nodes, with the weights determined via 
the procedure described in Remark 2.1. The following theorems provide a basis for this; 
numerically (see Section 8) the resulting quadrature nodes tend to be inferior to those 
produced by the optimization scheme of [13, 25, 2]; however, they are useful as starting 
points for that scheme, or as somewhat less efficient nodes which can be computed much 
more quickly. 

6.1    Euclid Division Algorithm for Band-Limited Functions 

The following two theorems constitute a straightforward extension to band-limited func- 
tions of Euclid's division algorithm for polynomials'. Their proofs are quite simple, and 
are provided here for completeness, since the author failed to find them in the literature. 

Theorem 6.1 Suppose that a, ip : [0,1] -»■ <D are a pair of c2-functions such that 

P(l) # 0, . (77) 

c is a positive real number, and the functions f,p are defined by the formulae 

f(x) = j\(t)e2icxtdt, (78) 

p(x) = j\(t)eicxtdt. (79) 

Then there exist two c1 -functions 77, f : [0,1] ->■ © such that 

f{x)=p(x)q(x)+r(x) (80) 

for all x e R, with the functions q, r : [0,1] ->■ R defined by the formulae 

q(x) = j\(t)eicxtdt, (81) 

r(x) = j\(t)elcxtdt. (82) 

17 



Figure 1: The split of integration range that yields (85) 

Proof. 
Obviously, for any functions p,q given by (79), (81), 

p{x)q{x)   =   jT j(t)eicxtdt ■   f1 TJ{T) eicxr dr 

=    /   [\(t)r)(T)eicx^ drdt. Jo Jo 
Defining the new independent variable u by the formula 

u = t + r. 

we rewrite (83) as 

p(x)q{x)    =   I etcux JU
^(U-T)T]{T) drdu 

+    [~elcux[    ip(u-r)v(r)drdu 
J\ Ju-l 

(see Figure 1). Substituting (78), (82), and (85) into (80), we get 

£ eteux f\-(u-T)r}(r) drdu 

+    f elcux /    ^(U-T)T)(T) drdu+ f\(t)e 
•/l Ju-l Jo 

dt 

= /     a(t)e2lcxtdt+ f1 a(t)e2icxt dt. 
JO Ji/2 

(83) 

(84) 

(85) 

(86) 

Due to the well known uniqueness of the Fourier Transform, (86) is equivalent to two 
independent equations: 

L etCUX f0
U^u-T)v(r) drdu + J\(t)eicxt dt 

rl/2 
= a(t) e2icxt dt, 

Jo (87) 
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/ elcux j    V{U-T) T)(T) dr du = [' a(t) e2icxt dt. 
Jl Ju-l Ji/2 

(88) 

Now. we observe that (88) does not contain f, and use it to obtain an expression for 7? 
as a function of y, a. After that, we will view (87) as an expression for f via (p, a, 77. 

From   (88) and the uniqueness of the Fourier Transform, we obtain 

/     <P(U-T)TI(T) dT = a£), 
Ju—l I 

for all ue [1,2]. Introducing the new variable v via the formula 

v = u - 1, 

we convert (89) into 

fl v + 1 
/    <p(v + l-T)T)(T)dT = ff(——), 

which is a Volterra equation of the first kind with respect to 77; differentiating (91) with 
respect to v, we get 

(89) 

(90) 

(91) 

-<p(l) v{v) + I' <p\v + l-T) r?(r) dr = l </(—), 
Jv 2 2 

(92) 

which is a Volterra equation of the second kind. Now, the existence and uniqueness 
of the solution of (92) (and, therefore, of (89) and (88)) follows from Theorem 2.3 of 
Section 2. 

With 77 defined as the solution of (89), we use (87) together with the uniqueness of 
the Fourier Transform, to finally obtain 

u        ru 

Sfa) = ^(g) " J0  V(u-r) V{T) dr, (93) 

for all u e [0,1]. 

D 
The following theorem is a consequence of the preceding one. 

Theorem 6.2 Suppose that a,<p : [-1,1] -> C are a pair of (^-functions such that 
V(-1) 7^ 0, v?(l) 7^ 0, c is a positive real number, and the functions f,p are defined by 
the formulae 

f(x) = f\(t)e2icxtdt, (94) 

p(x) = Jl tp(t) eicxt dt. (95) 
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Then there exist two c1-functions 77, f : [-1,1] -> C S«Cä iAa* 

/(x) = p(x) q{x) + r(x) (96) 

/or all xeR, with the functions g, r : [-1,1] -> R «fe/foed ty <Äe /ormu;ae 

?(z) = ^ ^(t) eicxt dt, 

i*) = f_m ,icxt dt. 

Proof. 
Defining the functions /+, /_,p+, p_; by the formulae 

•I 

(97) 

(98) 

f+(x)= f a(t)e2icxtdt, 
Jo 

/_(*)= f° a(t)e2icxtdt, 
J — 1 

p+{x)= f\(t) eicxt dt. 
Jo 

p-(x)= f   <p(t) eicxt dt, 
J — 1 

we observe that for all 16I1, 

f(x) = f+(x)+f_(x), 

p(x)=p+(x)+p_(x). 

Due to Theorem 6.1, there exist such 77+, 77., <f+, f_, that 

f+(x) = p+(x) q+(x) + r+(x), (105) 

f-{x)=p-(x)q_(x) + r-{x), (106) 

with the functions q+,g_,r+,r_ defined by the formulae 

V+(x) = l ri+(t)eicxtdt, (107) 

q-(x)= f   r)„(t) eicxt dt 

20 
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r+(x) = Jo
lUt)etcxtdt (109) 

r-(x) = f\.(t)elcxtdt. (110) 

Now. defining q, by the formula 

q(x) = q_{x) + q+{x) (HI) 

for all x e [-1,1], we have 

p(x)q(x)   =   (p-(x) + p+(x)) • {q.(x) + q+{x)) 

=   P+{x)q+(x)+P-(x)q-(x)+p-(x)q+(x)+p+(x)q-(x), (112) 

and we define r(x) by the obvious formula 

r{x) = r_(x) + r+(x) - (p-(x) q+{x) +p+(x) q_{x)). (113) 

D 

6.2    Quadrature nodes from the division theorem 

In much the same way that the division theorem for polynomials can be used to provide 
a constructive proof of Gaussian quadratures, Theorem 6.2 provides a method of con- 
structing generalized Gaussian quadratures for band-limited functions. The method is 
as follows. 

To construct a quadrature for functions of a bandwidth 2c, prolate spheroidal wave 
functions corresponding to bandwidth c are used. (Thus the eigenvalues {A,-} and eigen- 
functions {ipj} are in this section, as elsewhere in the paper, those corresponding to 
bandwidth c). The following theorem provides a bound of the error of a quadrature 
whose nodes are the roots of the n'th prolate function ißn, when applied to a function 
/ which satisfies the conditions of the division theorem, in terms of the norms of the 
quotient and remainder of / divided by ijjn: 

Theorem 6.3 Suppose that xx,x2,...,xn e R. are the roots of ipn.   Let the numbers 
Wi, w2,..., wn € R. be such that 

22wkipj(xk)=       ^j(x) dx, (114) 
k=l J~1 
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for all j - 0,1,..., n - 1.   Then for any function / : [-1,1] -> C which satisfies the 
conditions of Theorem 6.2, 

E *>kf(xk) - /   f(x) dx 

< |A„I-NI + lieil-EW-IWL-(2 + ElMl). 
J=7l k=l 

(115) 

w/iere the functions rj, £ : [-1,1] ->. C are as de/mea" m Theorem 6.2. 

Proof.   Since / satisfies the conditions of Theorem 6.2, there exist functions a r 
[-1,1] -> R defined by (97),(98) such that 

f(x) = ipn(x)q(x)+r[x). 

Then, defining the error of integration Ef for the function / by 

we have 

Ef = 

Ef   = 

< 

n r1 

Y,wkfM- / f[x)dx 
k=i •'-i 

22 wk WnM q(xk) + r(xk)) - /   (ibn(x) q(x) + r(x)) dx 
n . 

E w* il>n{xk) q{xk) - f   ipn(x) q(x) dx 
k=l J-l 

E wkr(xk) - /   r(x) dx\ 
k=l J-1 

(116) 

(117) 

Since the nodes {xk} are the roots of tpn, 

Thus 

Now 

Y2wk^n{xk)q{xk) = 0. 
k=\ 

Ef< 
r1 n ri 

J    Mx)q(x) dx + "22^kr(xk) - /   r(x) dx 
k=i J-1 

j_^ ij)n(x) q(x)dx   =   J1 ipn(x) £ T)(t) eicxt dt dx 

=   J_iV(t)f\n(x)eicxtdxdt 

J — 1 

(118) 

(119) 

(120) 

(121) 
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Using the Cauchy-Schwartz inequality and the fact that the function \l)n has unit norm, 
we get from (121) that 

/   ipn{x)q(x) dx 
J — 1 

<  |A»|-||i?||. (122) 

Also, 

" rl 
2^wkr{xk) - /    r(x) dx 

=   E N* (£ ffl eicXkt dt) ~ J\ [j\ m elcxt *) dx 

=   J\(t)(f2^eicxkt - feicxt dx)dt. 

Substituting (73) into (123), and using the Cauchy-Schwartz inequality, we get 

" rl 
2jiüfcr(x*) - /   r(x) dx 
k=\ J-1 

= fed) (E^fEA^iW^t)! 

-/^(EA^.^.^J dx\dt 
oo / m \ 

< II^II-EW-WIL- 2 + EIKII • 
j=n \ Jt=l / 

Combining (120), (122), and (124), we get 

oo / m \ 

Ef < |An|.|H| + lieil-ElAil-WL-fa + ElKIl]- 

(123) 

(124) 

j=n fc=l 

(125) 

D 

Remark 6.1 The use of Theorem 6.3 for the construction of quadrature rules for band- 
limited functions depends on the fact that the norms of the band-limited functions g 
and r in (116) are not large, compared to the norm of / (both sets of norms being on 
[-00,00]). Such estimates have been obtained for all n > 2c/n + 101og(c). The proofs 
are quite involved, and will be reported at a later date. In this paper, we demonstrate 
the performance of the obtained quadrature formulae numerically (see Section 8 below). 
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Remark 6.2 It is natural to view (116) as an analogue for band-limited functions of 
the Euclid division theorem for polynomials. However, there are certain differences. In 
particular, Theorem 6.1 admits extensions to band-limited functions of several variables, 
while the classical Euclid algorithm does not. Such extensions (together with several 
applications) will be reported at a later date. 

7    Interpolation via Prolate Spheroidal Wavefunctions 

Interpolation is usually performed by the following general procedure: assuming that the 
function / : [a, b] -> C to be interpolated is given by the formula 

f{x) = Ci^(x) + C2(f>2{x) + ... + Cntnix), (126) 

where <j>u fa,..., fa : [G, b) -» C are a fixed sequence of functions (often polynomials), 
solve an n x n linear system to determine the coefficients c^c^...,^ from the values of 
/ at the n interpolation nodes, then use (126) to evaluate / wherever needed. As is well 
known, if / is well-approximated by a linear combination of the interpolation functions, 
and if the linear system to be solved is well-conditioned, then this procedure is accurate.' 

As shown in Section 5 in the context of quadratures, a linear combination of the first 
n prolate spheroidal functions Vo, A, ■ ■ •, ^„-i for a band limit c can provide a good 
approximation to functions of the form eicxt, with t € [-1,1] (see (71,74)); in the regime 
where the accuracy is numerically useful, the error is of the same order of magnitude as 
|A„|. This, in turn, shows that they provide a good approximation (in the same sense as 
in Remark 5.1) to any band-limited function of band limit c. Thus, if z/>0, ipi, ■ ■ ■, Vn-i are 
used as the interpolation functions in this procedure, they can be expected to yield an 
accurate interpolation scheme for band-limited functions, provided that the matrix to be 
inverted is well-conditioned. The following theorem shows that if the interpolation nodes 
are chosen to be quadrature nodes accurate up to twice the bandwidth of interpolation, 
with the quadrature formula being accurate to more than twice as many digits as the 
interpolation formula is to be accurate to, then the matrix inverted in the procedure is 
close to being a scaled version of an orthogonal matrix. 

Theorem 7.1 Suppose the numbers wu w2,..., wn € R and xx, x2,..., xn € R. are such 
that 

i: e2icax dx-J2 Wje2 
< £> (127) 
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for all a € [-1,1], and for some c> 0. Let the matrix A be given by the formula 

■ ( Vo(zi)   ViM   ■■■   ^n-i(zi) \ 

A = 
VQM   Vi{x2) 1pn-l{X2) 

(128) 

V M*n)     AM     ■■■    Ipn-lM  J 

let the matrix W be the diagonal matrix whose diagonal entries are Wi,w2,. ■ ■ .wn. and 
let the matrix E = [ejk] be given by the formula 

Then 

\&jk\ < 

Proof. Clearly 

E = I- A'WA. 

2e 
\j-i\, ■Jfc-1 

£jk = Sjk - Y, Wl ^j-i(x0 A-i(xi), 
1=1 

(129) 

(130) 

(131) 

where <% is the Kronecker delta function. Using (18), this becomes 

ejk     —     äjk I>* ■   IT— I' e~icxit^-iW dt 
i=i \Äj-i J~l i 

A* 
1 r\     r\ n 

=   6jk ~ X~JT7 7-i 7-i ^'~1^ ^*"1(r) E wie~icX!t eicX!T dt dr.   (132) 

Using (127). this becomes 

ejk = 6jk- =—-— f   j    ^-iW^-i(r) (133) 

■  [J^e-^e^ds - fe(t+r)J dtdr, 

where fe : [-2,2] ->• C is a function which satisfies the relation 

\fe(x)\<e, (134) 

for all xe [-2,2]. Thus 

e,-fc   =   6jk - f    f' ^     (t) ^(r) A1 ,—ICSt „ICST elcST dsdtdr 

'XXi/.il^W^W/.lt + r) dtdr (135) 
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Using (18), this becomes 

ejfc   =   5jk-       Tpj-i(s)ipk-i(s) ds 
J — \ 

+ A 1  / , ^-^T) /     ^3-l(t)fe{t + T) dtdT. Aj-l^k-l •'-1 J-l 

Due to the orthonormality of the functions {^}, this becomes 

Cj'fc = T i— /   ^-I(T) /   Vj-i(*) fe(t + r) dtdr. 

Using the Cauchy-Schwartz inequality, this becomes 

(136) 

(137) 

M  < 

< 

< 

^ f\Wi-x\\2 j\\f,{t + r)\* dt dr 

dr 

(138) 

D 

From inspection of Theorem 2.5, it can easily be seen that the number N of eigenval- 
ues needed for a bandwidth of 2c and an accuracy of e2 is roughly twice the number of 
eigenvalues needed for a bandwidth of c and an accuracy of e. Thus a generalized Gaus- 
sian quadrature for a bandwidth 2c and an accuracy e2 has roughly the same number 
of nodes as are needed for interpolation of accuracy e. In our numerical experiments. 
this correspondence was found to be much closer than the rough bounds in Theorem 2.5 
indicate: in the results tabulated in Section 8, the number of nodes for an interpolation 
formula of a desired accuracy e was always chosen to be the number of quadrature nodes 
for a desired accuracy e2 for twice the band limit (that number, in turn, being chosen 
as indicated in Section 5); the correspondence between the desired accuracy and the 
experimentally measured maximum error can be seen in Tables 3 and 4. 

The coefficients c^cz,...,^ produced by this interpolation procedure (see (126)) 
can, of course, just as easily be used for evaluating derivatives or indefinite integrals of 
the interpolated function, as they can for computing the function itself. 
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8    Numerical Results 

The algorithms of Sections 5-7 have been implemented in double precision (64-bit floating 
point) arithmetic, with results shown in Tables 1-4. Tables 1 and 2 show the perfor- 
mance of quadrature nodes produced by the schemes of Sections 5 and 6, when used as 
quadrature nodes; Tables 3 and 4 show their performance when used as interpolation 
nodes. These are not actually the same sets of nodes; even with the bandwidth c for in- 
terpolation being half of the bandwidth for quadrature (as it is in the tables), more nodes 
are needed to achieve a given accuracy of interpolation than are needed to achieve a given 
accuracy of quadrature, as can be seen by comparing the number of nodes (printed in 
the column labeled n in each table). The error figures in the tables are approximations 
of the maximum error of interpolation or of the quadrature, when applied to functions 
of the form cos(ax) and sin(aar), with 0 < a < c; they were computed by measuring the 
error at a large number of points in a (for interpolation, in both a and x), including the 
extremes. The column labeled "Roots" contains the errors for the nodes produced by 
the scheme of Section 6; the column labeled "Refined" contains the errors after those 
nodes, used as a starting point, have been run through the scheme of Section 5. The 
variable e which appears in the tables is the requested accuracy, used to determine the 
number of nodes in the ways described in Sections 5 and 7. 

Also tabulated are the numbers of Legendre nodes required to achieve the same 
accuracy e using polynomial interpolation of quadrature schemes. Since Chebyshev 
nodes are generally known to be superior for interpolation, for that case the numbers of 
Chebyshev nodes required to achieve the same accuracy are also tabulated. 

Figure 2 contains the maximum norm of the derivative of each prolate function ipj(x), 
for c = 200 and x € [-1,1], as a function of j; also graphed, for comparison, is the 
maximum norm of the derivative of each normalized Legendre polynomial Pj(x) over 
the same range; and graphed below, on the same horizontal scale, are the norms of the 
eigenvalues \j. The graph shows that, for this value of c, computing the derivatives of 
a function given by a prolate series is a better-conditioned operation than computing 
the derivatives of a function given by a Legendre series of the same number of terms. 
(Obviously, if the number of terms can also be reduced, as in the situations of Tables 1- 
4, there is a further improvement in the condition number.) The same general pattern 
of behavior is exhibited for other values of c; as c approaches zero (and the prolate 
functions approach the Legendre polynomials), the value of j at which the maximum 
norm of the derivative rises sharply also approaches zero (as is to be expected, since for 
c = 0 the prolate functions reduce to Legendre polynomials). Finally, Tables 5 and 6 
contain samples of quadrature weights and nodes. 

Remark 8.1 In this paper, detailed discussion of issues encountered in the implemen- 
tation of numerical algorithms has been deliberately avoided, as well as any discussion of 
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CPU time requirements, memory requirements, etc. Thus, we limit ourselves to observ- 
ing that all algorithms have been implemented in FORTRAN, that with the exception of 
the procedure for the evaluation of Prolate Spheroidal Wave functions described in Sec- 
tion 4, we have not designed or implemented any new or original numerical algorithms, 
and that the procedure of Section 4 consists of applying standard tools of numerical 
analysis (diagonalization of a tridiagonal matrix) to the well-known recursion (61). The 
resulting algorithm for the evaluation of prolate spheroidal wave functions has the CPU 
time requirements proportional to c2, with a fairly large proportionality constant. The 
procedure of [2], when applied to the system of functions ^0, ^i, •. •, ^2n+i requires order 
n3 operations, also with a fairly large proportionality constant. On the other hand, the 
cost of finding all roots n of the function i>n lying on the interval [-1,1] is proportional 
to n, and the proportionality constant is not large. The largest c we have dealt with in 
our experiments was about 6000, with resulting quadratures having about 1900 nodes. 
In this regime, the construction of the quadrature (both nodes and weights) took several 

/VUrl minutes on the 300-megällop SUN workstation; while there are fairly obvious ways to 
reduce the cost of the'calculation (both in terms of asymptotic CPU time requirements 
and in terms of associated proportionality constants) we have made no effort to do so. 

The following observations can be made from the examples presented in this section, 
and from the more extensive tests performed by the authors. 

1. When the nodes obtained via the algorithm of [2] are used for the integration of band- 
limited functions, the resulting quadrature rules are significantly more accurate than the 
quadratures obtained from the nodes of appropriately chosen prolate functions; however, 
the difference between the numbers of nodes required by the two approaches to obtain 
a prescribed precision is not large. When the nodes obtained via the two approaches are 
used for the interpolation (as opposed to the integration) of band-limited functions, the 
performances of the two are virtually identical. 

2. For large c, the number of nodes required by a quadrature rule for the integration 
of band-limited functions with the band-limit c is close to f; the dependence on the 
required precision of integration is weak (as one would expect from Theorem 2.5 and 
subsequent developments). 

3. The numbers of nodes required by our quadratures rules to integrate band-limited 
functions is roughly TT/2 times less than the numbers of Gaussian nodes; the numbers 
of nodes required by our interpolation formulae in order to interpolate band-limited 
functions is roughly TT/2 times less than the number of Chebychev (or Gaussian) nodes. 
Again, the dependence of the required number of nodes on the accuracy requirements is 
weak. 

4. The norm of the differentiation operator based on our nodes is of the order c3/2, as 
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compared to the norm of the spectral differentiation operators obtained from classical 
polynomial expansions; this might be useful in the design of spectral (or pseudospectral) 
techniques. 

9    Miscellaneous Properties 

Prolate spheroidal wave functions possess a rich set of properties, vaguely resembling the 
properties of Bessel functions. This section establishes some of those properties. Some 
of the identities below can be found in [20],[17],[5]; others are easily derivable from the 
former. 

The identity 

00 

Jcxt = T,XjTt>i(x)Mt), (139) 
3=0 

(see Section 5) has a number of consequences which, while fairly obvious, seem worth 
recording, since similar properties of other special functions have often been found useful. 
Differentiating (139) m times with respect to x and n times with respect to t yields the 
formula 

/ 1 \ (m+n)   oc 

xmtn£^t=n\ £Ai^>(z)vf(i), (140) 

for all x,t € [-1,1]. Multiplying (139) by e~icut, and integrating with respect to t, 
converts it into 

sinjc ■ {x - u))       c  ~    2 
 J^  = 2 XA-^iMVifa), (141) 

Taking the squared norm of (139), and integrating with respect to x and t, yields the 
formula 

oo 

ElAil2 = 4; (142) 
j=0 

combining this with (21) yields 

^ 2c 
X>; = 7- (143) 
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Setting x = t=l converts (139) into 

oo 

The identity 

\jiPj(x) = j\tcxtiPj(t)dt (145) 

(see Section 2.5) also has a number of simple but potentially useful consequences. Dif- 
ferentiating it k times with respect to x, we get 

\^f\x) = (xc)k f e^tk^{t)dt. (146) 

We next consider the integral 

r1   eicxt 

f{x) = f(a.x) = y_i —^(i) dt. (147) 

Differentiating (147) with respect to x, we have 

tena'X) = lCL—a**t)d*- (148) 
Multiplying (147) by ice. and subtracting it from (148), we obtain 

—f(a.x)-tcaf(a,x)   =   icf\icxt^(t) dt (149) 

=   icXjipj(x). 

In other words, / satisfies the differential equation 

fix) - icaf(x) = icXjiPjix). (150) 

The standard "variation of parameter" calculation provides the solution to (150): 

f{x) = icXj f* e-lca^x-%it) dt + /(0) eicax. (151) 

Introducing the notation 

75        X        d 

v = Tc°Tx (152) 
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(i.e. V is the product of multiplication by 1/ic and differentiation), we rewrite (146) as 

V\^){x) = i- £ tk eto i,j(t)dt; (153) 

for an arbitrary polynomial P (with real or complex coefficients). 

P(V)M(x) = 1 £ P(t) e** ^-(t)d*.     ~ (154) 

By the same token, the function <j> defined by the formula 

satisfies the differential equation 

P(V)(<j>)(x) = \mipm(x). (156) 

The following lemma provides a recursion connecting the values of the fc-th derivative 
of the function *0m with its derivatives of orders A: — 1, A; — 2, A: — 3, A — 4. 

Lemma 9.1 For any positive real c, integer m>0, and x € (-co, +oo), 

(l-x2)^(x)-2(k + l)x^+1)(x) 
+ (Xm-k(k + l)-C2X2)lpW(x) 

-2<*kx1>£-»(x) -c2k(k- l)^-2)(ar) = 0 (157) 

for all k>2. Furthermore, 

(1 - *2)C(z) ~ 4*iC(s) + (Xm - 2 - c2x2)^'m{x) 
-2c2x^m(x) = 0. (158) 

/n particular, 

- 2 (k + 1) tfg+1>(l) + (X. - k (k + 1) - c2) ^W(l) 

- 2c2A^-^(l) - c2A;(/c - 1)^(1) = 0 (159) 

/or all k>2, and 

~ 2C(1) + (Xm - c2)ipm{\) = 0, (160) 

-4^(1) + (Xm - 2 - c2)^(l) - 2^(1) = 0. (161) 
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Furthermore, for all integer m > 0 and k>2, 

-c2k(k-l)ip£-V(0) = 0. (162) 

For all odd m, 

<(0) + (Xm-2)^(0) = 0, (163) 

and for all even m, 

<(0) + Xm^m(0)=0. (164) 

Finally, for all integer m>0,k>0, 

iMi)*o, (165) 

Ali(0) = 0, (166) 

Ä+1)(0) = 0. (167) 

Proof.   All of the identities (157) - (164), (166), (167), are immediately obtained bv 
repeated differentiation of (24). 
In order to prove (165), we assume that 

tfm(l) = 0 (168) 

for some integer m > 0, and observe that the combination of (168) with (159), (160), (161) 
implies that 

^°(1) = 0 (169) 

for all £ = 0,1,2,.... Due to the analyticity of i>m{x) in the complex plane, this would 
imply that 

Wm{x) = 0 (170) 

for all x eR1. 

D 
The following is an immediate consequence of the identity (160) of Lemma 9.1. 

Corollary 9.2 For all integer m,n>0, 

tfm(l) • tfn(l) ~ $,(1) ■ iMl) = (Xn - Xm) ' ^n(l) ■ ^m(l) , (171) 

where Xm,Xn€R. are as defined in Theorem 2.6. 
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Theorem 3.1, in Section 3.1. gives formulae for the entries of matrices for differen- 
tiation of prolate series and for multiplication of prolate series by x. Matrices for any 
combination of differentiation and of multiplication by a polynomial can obviously be 
constructed from these two matrices; for instance, calling the differentiation matrix D, 
and the multiplication-by-x matrix X, the matrix for taking the second derivative of a 
prolate series, then multiplying it by 5 - x2, is equal to (5/ - X2)D2. 

In many cases, however, there are simpler formulae for the entries of such matrices, 
that is, for inner products ofipj(x) with its derivatives and with polynomials. The follow- 
ing theorems establish several such formulae, as well as a few formulae for inner products 
which do not involve ipj(x) itself but only its derivatives. We start with Theorem 3.1. 
restated here for consistency. 

Theorem 9.3 Suppose that c is real and positive, and that the integers m and n are 
non-negative. If m = n (mod 2), then 

J_xtl>'n(x)ipm(x) dx = J_ xi)n{x)xj)m{x) dx = 0. (172) 

Ifm^n (mod 2), then 

f\iß'n(x)rpm(x)dx   =   -1^^(1)^(1), (173) 

x^n(x)^m(x)dx   =    -A2
Am

+
A^2 ^(1)^(1). (174) £ 

Theorem 9.4 Suppose that c is real and positive, and that the integers m and n are 
non-negative. If m ^ n (mod 2), then 

J_ix^'n(x)ipm(x)dx = 0. (175) 

Ifm = n (mod 2), then 

f^xi&WMx) dx = ~j^ (2<Ml)lMl) ~ <W • (176) 

Proof. Identity (175) is obvious since the functions fy are alternately even and odd (see 
Theorem 2.4). In order to prove (176), we consider the integral 

]_ xi;'n(x) ipm(x) dx 

=   YJ\X (£ eicxtMt) dtj' iM*) dx 
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=   A^/i^77^ (f  tMQJ^'dt) dx 
=   YJ-X 

t (£ xMx)eiat dx^ ipn(t) dt 

In other words, 

/    x^n{x)^m{x) dx = ^ f  xi/m(x)Mx) dx. (177) 
AJI    J — 1 

On the other hand, integrating the left side of (177) by parts, we obtain 

/    xip'n(x)ipm{x) dx 

=   2^(1)^(1)-/"    {ibn{x)^m(x)x + ipn{x)^m{x)) dx 
J — 1 

=   2<M1) Ml) - J\ x^n(x) r//m(x) dx - 6mn . 

Combining (177) and   (178), we have 

— J_lX^'m(x)^n(x) dx 

=   2^(l)Vn(l)- f  xr//m(x)i;n{x)dx-6rmt 
J — 1 

from which (176) follows directly. D 

Theorem 9.5 Suppose that c is real and positive, and that the integers m and n are 
non-negative. If m ^ n (mod 2), then 

j^x2^{x)<ipm{x) dx = 0. (178) 

Ifm = n (mod 2) and m^n, then 

f1 x2^(x)ipn(x)dx 
J — \ 

2A 
=     JT^T  (^(l) W1) ~ ^.(1) ^n(l)) 

-xrf>zMl)Ml) (179) 
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■ (Xn - Xm) Vn(l) Tpm{l) 

~ An + Am ^"(1)^(1)' (180) 

where Xm,Xn € R are as de/med m Theorem 2.6. 

Proof. Clearly (178) is true, since the functions ipj are alternately even and odd. In 
order to prove (179) and (180), supposing that m = n (mod 2) and m ^ n, we consider 
the integral 

_ix
2^{x),bm{x)dx 

= yn L *2 • CC eicxt^{t) ay Mx) dx 
=     ~Tnl-i   ^rn(x)x2-^   t2lPn{t)eUxt dt)   dx 

= xL t2^{t)^'m{t)dt, 
X 
Ä 

which is summarized as 

f_x x2 rn{x) Mx) dx = ^- £ x2 rm{x) ^(x) dx . (181) 

On the other hand, integrating the left side of (181) by parts, we have 

/    x2^(x)^m(x)dx 

=   2^(l)V>m(l)-|_1i <(*) ^'m(x)x2 + 2x^m(x)) dx 

=   2 ^(1) ^(1) - 2 £ yn(x) i;m(x) x dx 

"/.!   ^n(x) Tp'm(x) X2 dx . (182) 

Due to Theorem 9.4 and the fact that m # n, we immediately rewrite (182) as 

/  x2^(x)^m(x)dx 
J — 1 

= 2^n(i) ^(D-T^T- 2 iMi)iMD 

"/:   X2^n(x)^'m(x)dx, (183) 
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which we rewrite as 

£ i? 1>'n(x) rß'm(x) dx 

=     2^(l)^(l)-ri^-Vn(l)Vm(l) 

- I     x2^{x)^m{x) dx. (184) 

Swapping m with n, we convert (184) into 

f  x2x/n{x)i/m(x)dx 

=     2^(l)vn(l)--i^rVn(l)Vm(l) 

~ J-i X'v'^x)^{x) dx. (185) 

Combining (184) and (185). we obtain 

fV<(*Uv»(x) dx-2<(l),Ul)+ _i^L-^(l)0m(l) 

=    /   x2^(x)Lnlx)dx-2<(l)^n(l)+-i^-%(l)^m(i), (186) 

which is obviously equivalent to 

f   x2v^(x)vm(x)dx 

=   j^x2v^(x)vn(x) dx + 2 W(l)4,(l)-^(l)i(l)) 

+ 4x^^(1)^(1). 

Finally, combining (181) with (187), we have 

Am    fl 

-f- /     x2^(x)iyn(o:) dx 
An   J-l 

=    f\  x2 <(x) rpn{x) dx + 2 «(1) ^m(l) - ^(1) ^n(l)) 
J — 1 

+ 4TLTT^^(1)^(1)' (187) 
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which is easilv rewritten as 

& - o /: x2^{x)xpn{x) dx 

2(^(l)«l)-tfn(l)lfc,(l)) 

or 

/*  z2<(:r)^(:r)dx 

-Ä^t:^1)^1)- ass) 
We finally rewrite (188) as (180) using Corollary 9.2. D 
The following theorem is an immediate consequence of combining the preceding theorem 
with equation (184) from its proof. 

Theorem 9.6 Suppose that c is real and positive, and that the integers m and n are 
non-negative. Ifm^n (mod 2), then 

f_ix
2ip'n(x)ij;'m(x)dx = 0. (189) 

Ifm = n (mod 2) and m^n, 

[l x2^'m(x)iP'n(x)dx 

2A 
=   2^(1)^(1)+ 3—^-^(1)^(1)-^„(1)^(1))      .        (190) 

2A 
=     2^(l)Vm(l) + T-3Y-  «(1)^(1) -C(l)^n(l)) (191) 

=   TMl)^(l) (ATn^:A
A;Xn-c2). (192) 

Theorem 9.7 Suppose tfia* c zs red and positive, and that the integers m and n are 
non-negative. Ifm^n (mod 2), then 

j_x Mx) fM dx = £ x2 ipn(x) ipm{x) dx = 0 (193) 
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Ifm = n (mod 2) and m ^ n, then 

[l iPn(x)^(x)dx 
J — 1 

2 A2 

^-T1^  (l/£(l) tfm(l) - ^n(l) C(l)) (194) 

A 
A2   ^A2  {Xn-Xm)i>m{l)lpn(l), (195) 

m       'vrc 

/   x2ipn{x) 2pm(x) dx 
J — \ 

| -~T  (^(1)^(1) -^n(l)C(l)) (196) 

1     AmAn =     ~^3^~TÄ2-(X«-Xm)^m(l)^n(l), (197) 

w/iere Xm, Xn ^ R are as de/med m Theorem 2.6. 

Proof. Identity (193) is obvious, since the functions ipj are alternately even and odd. 
In order to prove (194)-(197), we start with the expression 

\nip»(x) = -c2 f1 t2eicxtij;n(t)dt.     ■ (198) 
J — 1 

Taking the inner product of (198) with ^m(x), we have 

Xn J_     1p'n(x) 1pm(x)  dx 

=   -c2/^   (Kf_xt
2ibn{t)eicxtdt)ji3rn{x)dx 

=   ~<? J\ t2^n{t) (y^ ^m(x)eicxtdxSj dt 

=     ~C2Xm   f      t2TPn{t)lbm{t)dt, 
J — 1 

which we summarize as 

j    x2 ^n(x) ipm(x) dx = -i -2-  f1   rp»(x) ^m[x) dx. (199) 

Swapping n, m, we rewrite (199) in the form of 

/   x2 i/;n(x) ipm(x)dx 
J — 1 

1   ^m     f1 

=     —^-^ J_l^m(x)Vn(x)dx. (200) 
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Combining (199) and (200), we get 

£ <(x) ipm{x) dx = ^ £ V&(*) ^(i) ^ • (201) 

On the other hand, integrating the left side of (201) by parts, we have 

/     i'n(x) lPm{x) dx 
J — 1 

=    ^(1) ^(1) - ^(-1) 4(~1) - /    <(l) C W ^ 

=    2 <(l) ^(1) - (^(1) </(l) " ^n(-l) tfm(-l)) 

+ /i ^X)^m(x) dx- (202) 

We rewrite (202) in the form of 

/ f;(x)^m(x)dx 
•j—l 

=     2(^(l)V>m(l)-V>n(l)^4(l))+  I' ^(l)^(l) dx. 
J ~~ 1 

We combine (201) and (203) and get 

(if"1) L ^(x)rn(x)dx' 
=   2 (^(1)^(1)-^(1)^(1)). (203) 

Since m ^ n, we easily rewrite (203) as (194). We obtain expression (196) by combin- 
ing (200) and (194). The identities (195), (197) follow from (194), (196) immediately 
due to Corollary 9.2. □ 

Theorem 9.8 Suppose that c is real and positive,' and that the integers m and n are 
non-negative. Let 

rv 
^n{y) = J   ^n{x) dx. (204) 

If n is odd and m is even, then 

I1  l 

/_! 7^*(*)W*) dt (205) 

=   ^-^1^(1)^(1) (206) 

+ 2T2~TF^(1) T Un(t)dt. (207) 
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Ifm = n (mod 2), then 

r1 1 
/_! tMt)4>m(t)dt = 0. (208) 

Proof. We start with the identity 

An ipn (x) = ^ eic*s ^ (t) dt. . (209) 

Integrating (209) with respect to x, we have 

rv 
K /   ipn(x)dx 

Jo 

=   lo   {I-/01'^{t) dt) dx (210) 
=   J^(t) I" e^ct dx dt (211) 

which we summarize as 

An *n(y) = 1 £ 1 Mt) j* dt-j- £ i v»(t) d*. (213) 

Taking the inner product of (213) and ipm{y), we obtain 

~k L*n{y)' ij\\^® *)d* (214) 

1   y1  1- /-i 

TcJ-xt ^nW di' /_! ^m(y) dy (215) 

1     /•!    1 rl 

~Tc 7-1 t ^n(i) dt' 7-1 ^m(^ rfy' (216) 
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which we summarize as 

i   1 
- vn(t) ipm(t) dt 

1     A1   1 yi 
+ Ä~ 7-1 7 ^n^ dt' 7-1 ^'m^ dy   • (217) 

Exchanging m with n. we convert (217) into 

i   1 
- vm{t) xpn(t) dt 

(218) 

=    ic-r   I' *m{t)ll)n(t)dt 
An   J-l 

1      /•!    1 rl 

T 7-1 7 ^m^ d<' 7-i ^n^ dy' 

and combining (217). (218), we get 

y-icf   *n(t)if>m(t) dt-^ic f1 Vm(t)ipn(t) dt 
*m        J-l An      ;J-1 

=     —J_x   -^m(t)dt- J\n{t)dt 

i   fl l rl 

~x~J-i 7^nW dt' 7-1 ^'m^ df • (219) 

Suppose that 772 is even and n is odd; then the first product in the right hand side of (219) 
is zero, so 

A 
y-icf    ^n(t)^m(t) dt-^ic [l  tfm(i)^n(t) dt 
Am        J-l An        J-l 

1      /•!    1 rl 
=   ~ ÄI 7_! ~t ^ dt' /_! ^ W dt' (220) 

which is equivalent to 

J — 1 

A2   /-1 

T^/-,74(t)*7>(t)Ä- (221) 
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or 
rl 

Vm(t)lJ>n(t) dt 

A2   /-i 
=     -^ J_^n{t)^m{t) dt 

+ ^hClM)dt-£l^
dt- (222) 

On the other hand, integrating the left side of (222) by parts, we obtain 

J — 1 

=   *B(1) *m(l)-*„("!) ^(-l)-/1*«^)^^) A. (223) 

Since the product tfm(s) $n(x) is an odd function when m^n (mod 2), we rewrite (223) 
as 

J — 1 

=     2 tf„(1) *m(l) - £ ^(i) ^m(i) rfi . (224) 

The combination of (222) and (224) implies that 

/   *„(*) ^m(t) dt + ^f- f1 *n(t) ^m(t) dt 

=   2 ¥B(l) *m(i) - ^ 1 £ I Mt) dt ■ £ «*) dt, (225) 

A^n + A2 

=   2*n(l)*m(l) - ^j-J^^Mt) dt- f\m(t) dt, (226) 
which is equivalent to 

/    Vn(t)lpm(t)dt 
J — 1 

2A™   ■*„(!) *m(l) A'+A2, 
A 

A^ + -m \kL\^t)dt-L^dt- (227) 
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Finally, combining (217) and   (227), we have 

rl 1 

= «^».(i)»m(i) 

A^ + A^ y_i  jXpn(t)dt- y_   Vm(<) dt- (228) 

Equation (208) is easily proven since the product \ ipm(x) ipn(x) is an odd function when- 
ever m = n (mod 2). □ 

The above theorems do not use much of the detailed structure of the integral operators 
of which the functions {ipj} are eigenfunctions. Thus many of them generalize easilv to 
the case of an operator L : X2[0,1] -> L2[0,1] defined via the formula 

L{ib){x) = ^K(xt)xP(t)dt, (229) 

for some function K : [0,1] -> C; the following theorem is an example of this. 

Theorem 9.9 Let Xu A2 be two eigenvalues of the operator L defined by (229), that is, 

fo K(xt)^(t)dt   =   A^iOr), (230) 

JQ K(xt)ip2(t) dt   =   X2Mx). (231) 

Then 

A2      J0 
x^'i(x)Mx) dx 

AT = 71 ' (232) 
/   xip'2(x) ipi(x) dx 

J U 

provided that neither Ar nor the denominator of the right hand side of (232) is zero. 

Proof. Differentiating (230), (231) with respect to x, we get 

f\K'(xt)rk(t)dt   =   XMx), (233) 

fo tK'(xt)i;2(t)dt   =   A2^(x). (234) 

Multiplying (233) by xtfa(x), we have 

Xixil>[(x)ih(x) = xii>2(x) j tK'ixt)^) dt. (235) 
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Integrating on the interval [0,1], we obtain 

Xifx^[{x)iP2(x)dx   =   f'xrp2(x) fltK\xt)^{t)dtdx (236) 
u J 0 J 0 

=    [ tfait) [ xK'{xt)rp2(x)dxdt. (237) 

Renaming the variables of integration on the right hand side from x to t and vice versa, 
we get 

\ij  xi>[(x)ip2(x)dx =   /  x^{x)     tK'(xt)rp2{t)didx. (238) 

Substituting (234) into (238), we obtain 

Al /o X^'1 ^ ^2^ dx = X2 J x^(x) ip'2(x) dx, (239) 

from which (232) follows immediately, as does its caveat. D 

The following theorem establishes the relation between the norm of each function fy 
on [-1,1] (which in this paper is taken to be one), and its norm on (-oo, oo). 

Theorem 9.10 Suppose that c is real and positive,  and that the integer n is non- 
negative.  Then 

/OO 1 

Jl(x)dx = -. (240) 

where ßn is given by (21). 

Proof. 

jji(x) * = f (J-f Mt) amL^s. dt) Ux) dx 
•/-°° J-oo \7TfJ,n J-l X — t J V   ' 

1   f1  i n\   f1  f°° sm(c-(x-t))     , s     \ 
= .   7nLM) ■ U/-OC X-t ^ dX)   dt 

= ^-flyn{t)dt 
_1_ 

D 

The following theorem extends Theorem (9.10) to any band-limited function with 
band limit c. 
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Theorem 9.11 Suppose that c is real and positive, that the integer n is non-negative, 
and that f : R ->• C is a band-limited function with band limit c.  Then 

Proof. 

/    xpn(x) f(x) dx = — [   ipn{x) f(x) dx. (241) 
•'-00 [ln J-l K ' 

/oo 

1pn{x) f(x) dx 
-oo 

f°° (  1     r1 sinfc-(x-t))     , ,     \ 
=   /       — / ^   .    U Mt) dt) f(x) dx •/-oo \TTßn  J-l X — t j ■> \   i 

1      f1    ,   ,±\     Z'1    /"^   sin(c" (X-t))   ,,   N        \ =   — /    M^ •[- ——^ ,    ;; f{x) dx    dt 
Vn  J-l \7T J-oo X-t V   '        J 

=   — f   Mt)f{t)dt. 
Hn  J-l 

u 

Theorem 9.12 Suppose that c is real and positive,  and that the integer n is non- 
negative. Then 

fOO — ll)m(x), if  - 1 < X < 1, /oo 

^elcxtxbm(t)dt=l   »™ (242) 

.0, if x > 1   or x < —1. 

Proof. Since </>m is an eigenfunction of the operator Qc defined in (19), and ßm is the 
corresponding eigenvalue, 

Thus 

,   , >      1   fl sm{c ■ (x - u))  ,    . N   , 
Mm^m(i) = - /     -—- -M{u) du. (243) 

/oo 

eicxtipm(t)dt 
-00 

1    f°°   icxtf1  fl sin(c-(x-u))      , x     \ =   IT J     6     b / , ~^ ~ ^ u  d«    A (244) 

=   — /   iM«     - /     —— ~ elcxt dt    du (245) 
ßm J-l \7T ./-co X — U J v        ; 

45 



Since the innermost integral is the orthogonal projection operator onto the space of 
functions of band limit c on (-00, oo), applied to the function elcxt, it follows that: 

/oo 
eicxtipm(t) dt 

-00 

( — /   ^m{u)eiexudu,     if-KKl, 
~    ' (247) 

. °> if x > 1  or x < -1, 

from which (242) follows immediately. □ 

The following five theorems establish formulae for the derivatives of prolate functions 
and their associated eigenvalues with respect to c. 

Theorem 9.13 For all positive real c and non-negative integer m, 

d\m_       2^(1)-1 
~dc~ ~ Xm Tc • (248) 

Proof. We start with 

AmVm(x) = J^ eicxtipm{t) dt. (249) 

Differentiating (249) with respect to c, we obtain 

^W+A„^) 

=    f1 ix t eicxt t/;m(t) dt + f1 eicxt ^%© dt. 
•/-i J-i dc (250) 

Multiplying by ibm{x) on both sides of (250), and integrating on the interval [-1,1], we 
get 

=   J    Mx) J_   ixteicxt%l>m(t)dtdx 

J-i J-i dc 
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which we rewrite as 

=   J_iit^m{t)j\lcxtx^m(x)dxdt 

/     itrpm{t)—     Z     dt 
J-i ic     at 

=   A 

(252) 

rl dibm{t) 
J-i ~dc~ ^m^     ' (253) 

which we summarize as 

dXm _ Am   ri 9y,m(t) 
"¥-71-! WmW-^-dt. (254) 

On the other hand, integrating the right-hand side of (254) by parts, we have 

f^m(t)^ldt (255) 

J-i at 

which we rewrite as 

f\tMt)*^dt = r?m(l)-l. (256) 

Finally, substituting (256) into (254), we get 

dXm_      2^(1) -1 
~ä7 ~ Am —Tc— ■ (25?) 

D 

Theorem 9.14 For any positive real c and non-negative integer m, 

dßm     2        2 
-fc" = -*nlUl). (258) 
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Proof. We start with the identity 

_2cT   x ßm — —^m Am. (259) 

Differentiating (259) with respect to c, we get 

dUra _ 2c f-   dXm       x    ÖÄm\      2T    x "ö7~7iAm^r+A-^rJ + ^A-A-- (26°) 
Substituting Lemma 9.13 into (260), we get 

^    _    LC.oT    ^     2^(1)-1   ,   2T 

2t&U)-l  ,  1 

ac     ~   7'2AmAm_27 + -AmAm (261) 

=     9 - Mrn  —  + - ßm 
2c c 

2 2m      1 1 
c c 
0 

=    "/^. t-(l). (262) 

D 

The following theorem immediately follows from Theorems 9.13 and 9.14. 

Theorem 9.15 For all positive real c and non-negative integer m, n, 

Theorem 9.16 Suppose that c is real and positive,  and the integers m,n are non- 
negative. If m ^ n. then 

/.' *"<" ^ W * = "\ ÄT31T *.(1) *.(1) • (265) 

If m — n, then 

J_1Mt)—(t)dt = Q. (266) 
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Proof. Since the norm of tbn on [-1,1] remains constant as c varies. ipn must be orthog- 
onal on [-1,1] to its own derivative with respect to c. which immediately yields (266). 
To establish (265), we start with the identity 

\nißn (x) = J_ eicxt yn (t) dt. (267) 

Differentiating (267) with respect to c, we get 

^üw, (x) + x  ^ 
dc ^^ + A"  dc 

=   £ (i x t eto i;n(t) + eici£ ?M1)  dt. (268) 

Multiplying both sides of (268) by ipm(x) and integrating with respect to x, we have 

K ]_   Vw)       Q dx 

= ^ £x *'»(x) ^m ix)dx+Xm £ *>» w ^r dt> (269) 
which, using (176), we rewrite as 

(A„ - Am) j\m{t) ?Ml dt 

=   ~f xm + An ^2 ^m^ ^n^ ~ 5mn)' (27°) 
Assuming that m # n, and dividing by An - Am, we then get  (265). D 

Theorem 9.17 Suppose that c is real and positive, and the integer m is non-negative. 
Then 

dXr 
= 2CJ_1

x2^2m(X)- (271) dc 

Proof. Due to Theorem 2.6, 

(1 - x2)^(x) - 2xTP'm(x) + (xm - cV) iMs) = 0. (272) 

Making the infinitesimal changes c = c +h, Xm = Xm +£, and Vm(x) = V>m(x) + 5(x), 
this becomes 

(1 - x2) • (C(x) + 6"(x)) - 2x ■ Wm(x) + 5'(x)) 
+ (Xm + e-{c + hfx2) ■ (V>m(x) + 8{x)) = 0. (273) 
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Expanding each term, discarding infinitesimals of the second order or greater (that is, 
products of two or more of the quantities h, e, and S(x)), and subtracting (272), we get 

(1 - x2) S"(x) - 2x5'(x) + (Xm - cV) 6(x) + (e- 2chx2)^m(x) = 0.        (274) 

Let the self-adjoint differential operator L be defined by the formula 

L(f)(x) = (1 - x2)f"(x) - 2xf'(x) + (Xm - c¥)/(i). (275) 

Then, multiplying (274) by ipm(x)/h and integrating on [-1,1], we get 

/_! L^)^x) ^rn(x) dx+£-- £ 2cx2tfm{x) = 0. (276) 

Now | = ^f. In addition, since L is self-adjoint, 

L L(lt^ Mx) dx = £ 8-^{x) L(M(x) dx. (277) 

But due to (272), L(rj>m)(x) = 0 for all x €  [-1,1], so the integral (277) is zero 
Thus (276) becomes 

-£■ = 2cj_ix
2^2

m(x). , (278) 

D 

10    Generalizations and Conclusions 

In this paper, we design quadrature rules for band-limited functions, based on the prop- 
erties of Prolate Spheroidal Wave Functions (PSWFs), and the connections of the latter 
with certain fundamental integral operators (see (17), (19) in Section 2.5). The quadra- 
tures are a surprisingly close analogue for band-limited functions of Gaussian quadratures 
for polynomials, in that they have positive weights, are optimal in the appropriately de- 
fined sense, and their nodes, when used for approximation (as opposed to integration), 
result in extremely efficient interpolation formulae. Thus, Sections 5-7 of this paper can 
be viewed as reproducing for band-limited functions much of the standard polynomial- 
based approximation theory (for which see, for example, [24]). Generally, there is a 
striking analogy between the band-limited functions and polynomials. 

Obviously, there are certain differences between the resulting apparatus and the stan- 
dard numerical analysis. To start with, where the classical techniques are optimal for 
polynomials, the approach of this paper is optimal for band-limited functions; whenever 
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the functions to be dealt with are naturally represented by trigonometric expansions on 
finite intervals, our quadrature and interpolation formulae tend to be more efficient than 
those based on the polynomials. When the functions to be dealt with are naturally rep- 
resented by polynomials, the classical approach is more efficient; however, many physical 
phenomena involve bend-limited functions, and very few involve polynomials. 

Qualitatively, the quadrature (and interpolation) nodes obtained in this paper behave 
like a compromise between the Gaussian nodes and the equispaced ones: near the middle 
of the interval, they are very nearly equispaced, and near the ends, they concentrate 
somewhat, but much less than the Gaussian (or Chebychev) nodes do. For large c, the 
distance between nodes near the ends of the interval is of the order ^, with the total 
number of nodes close to f. In contrast, the distance between the Gaussian nodes near 
the ends of the interval is of the order £, with n the total number of nodes. A closely 
related phenomenon is the reduced norm of the differentiation operator based on the 
prolate expansions: for an n-point differentiation formula, the norm is of the order n3/2, 
as opposed to n2 for polynomial-based spectral differentiation. Thus, PSWFs are likely 
to be a better tool for the design of spectral and pseudo-spectral techniques than the 
orthogonal polynomials and related functions. 

Much of the analytical apparatus we use was developed more than 30 years ago 
(see [20]-[21], [17], [18]); the fundamental importance of these results in certain areas of 
electrical engineering and physics has also been understood for a long time. However, 
there appears to have been no prior attempt 'made to view band-limited functions as a 
source of numerical algorithms. Generally, there is a fairly limited amount of information 
in the literature about the PSWFs, especially when compared to the wealth of facts on 
many other special functions. Section 9 of this paper is an attempt to remedy this 
situation to a small degree. 

The apparatus built in this paper is a strictly one-dimensional one. Obviously, one 
can construct discretizations of rectangles, cubes, etc. by using direct products of'one- 
dimensional grids; the resulting numerical algorithms are satisfactory but not optimal. 
Furthermore, representation of band-limited functions on regions in higher dimensions 
is of both theoretical and engineering interest. Obvious applications include seismic 
data collection and processing, antenna theory, NMR imaging, and many others. When 
the region of interest is a sphere, most of the necessary analytical apparatus can be 
found in [21]. At the present time, we have constructed and implemented somewhat 
rudimentary versions of the relevant numerical algorithms; we are conducting numerical 
experiments with these, and will report the results at a later date. A much more difficult 
set of questions is presented by the structure of band-limited functions on more general 
regions. 
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Table 1: Quadrature performance for varying band limits, for e = 10" 

c n Maximum Errors Npo\ 
Roots Refined 

10.0 9 0.96E-05 0.51E-07 13 
20.0 13 0.17E-04 0.94E-07 19 
30.0 17 0.12E-04 0.50E-07 25 
40.0 20 0.70E-05 0.30E-06 31 
50.0 24 0.35E-05 0.83E-07 37 
60.0 27 0.25E-04 0.27E-06 43 
70.0 31 0.11E-04 0.66E-07 48 
80.0 34 0.48E-05 0.17E-06 54 
90.0 38 0.21E-05 0.40E-07 59 

100.0 41 0.12E-04 0.91E-07 65 
200.0 74 0.24E-05 0.86E-07 118 
300.0 106 0.32E-05 0.21E-06 171 
400.0 139 0.52E-05 0.62E-07 223 
500.0 171 0.56E-05 0.88E-07 275 
600.0 203 0.58E-05 0.11E-06 326 
700.0 235 0.57E-05 0.12E-06 377 
800.0 267 0.55E-05 0.13E-06 428 
900.0 299 0.53E-05 0.14E-06 479 

1000.0 331 0.50E-05 0.14E-06 530 
1200.0 395 0.44E-05 0.13E-06 632 
1400.0 459 0.38E-05 0.11E-06 734 
1600.0 523 0.31E-05 0.97E-07 835 
1800.0 587 0.28E-05 0.80E-07 937 
2000.0 651 0.23E-05 0.64E-07 1038 
2400.0 778 0.29E-05 0.15E-06 1240 
2800.0 906 0.19E-05 0.84E-07 1442 
4000.0 1288 0.37E-05 0.17E-06 2047 
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Table 2: Quadrature performance for varying precisions, for c = 50 

e n Maximum Errors A'poi 
Roots Refined 

0.10E-01 19 0.45E-01 0.10E-01 30 
0.10E-02 20 0.70E-02 0.13E-02 32 
0.10E-03 21 0.91E-03 0.14E-03 33 
0.10E-04 22 0.82E-04 0.13E-04 34 
0.10E-05 23 0.54E-04 0.11E-05 36 
0.10E-06 24 0.35E-05 0.83E-07 37 
0.10E-07 25 0.33E-05 0.57E-08 38 
0.10E-08 26 0.18E-06 0.36E-09 39 
0.10E-09 26 0.18E-06 0.36E-09 40 
0.10E-10 27 0.17E-06 0.21E-10 42 
0.10E-11 28 0.79E-08 0.11E-11 43 
0.10E-12 29 0.78E-08 0.56E-13 45 
0.10E-13 30 0.31E-09 0.27E-14 55 

DO 



Table 3: Interpolation performance for varying band limits, for e = 10~7 

c n Maximum Errors Npo\ 
Roots Refined Cheb. Leg. 

5.0 13 0.12E-06 0.12E-06 17 17 
10.0 18 0.12E-06 0.13E-06 24 25 
15.0 22 0.24E-06 0.25E-06 31 32 
20.0 26 0.26E-06 0.28E-06 37 39 
25.0 30 0.22E-06 0.23E-06 43 45 
30.0 33 0.67E-06 0.73E-06 49 51 
35.0 37 0.42E-06 0.46E-06 55 57 
40.0 41 0.25E-06 0.27E-06 61 63 
45.0 44 0.54E-06 0.60E-06 67 69 
50.0 48 0.29E-06 0.33E-06 73 75 

100.0 82 0.39E-06 0.46E-06 128 131 
150.0 115 0.52E-06 0.64E-06 182 186 
200.0 147 0.12E-05 0.15E-05 235 239 
250.0 180 0.83E-06 0.11E-05 287 292 
300.0 212 0.13E-05 0.17E-05 340 345 
350.0 245 0.75E-06 0.10E-05 392 398 
400.0 277 0.10E-05 0.14E-05 443 450 
450.0 309 0.13E-05 0.18E-05 495 502 
500.0 341 0.16E-05 0.22E-05 547 554 

1000.0 662 0.16E-05 0.24E-05 1058 1068 
1500.0 982 0.15E-05 0.25E-05 1566 1578 
2000.0 1301 0.20E-05 0.35E-05 2072 2086 1 
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Table 4: Interpolation performance for varying precisions, for c = 25 

£ n Maximum Errors Apoi 
Roots Refined Cheb. Leg. 

0.10E-01 21 0.38E-01 0.43E-01 31 34 
0.10E-02 23 0.37E-02 0.41E-02 34 36 
0.10E-03 25 0.29E-03 0.31E-03 37 39 
0.10E-04 26 0.74E-04 0.81E-04 39 41 
0.10E-05 28 0.44E-05 0.47E-05 41 43 
0.10E-06 30 0.22E-06 0.23E-06 43 45 
0.10E-07 31 0.46E-07 0.49E-07 45 47 
0.10E-08 32 0.95E-08 0.10E-07 47 49 
0.10E-09 34 0.36E-09 0.38E-09 49 51 
0.10E-10 35 0.67E-10 0.70E-10 51 52 
0.10E-11 37 0.21E-11 0.22E-11 53 54 
0.10E-12 38 0.36E-12 0.37E-12 54 56 
0.10E-13 39   0.59E-13 0.63E-13 98 61 

Table 5: Quadrature nodes for band-limited functions, with c = 50 and e = 10~7 

This table contains only half of the nodes and weights, in particular those for which the 
node is less than or equal to zero; reflecting these nodes around zero yields the remaining 
nodes, the weight for the node at -x being the same as the weight for the node at x. 

Node 
-.9904522459960804E+00 
-.9525601106643832E+00 
-.8927960861459153E+00 
-.8186117530609125E+00 
-.7350624131965875E+00 
-.6452878027260844E+00 
-.5512554698695428E+00 
-.4542505281525226E+00 
-.3551568458127944E+00 
-.2546173463813596E+00 
-.1531287781860989E+00 
-.5110121484050418E-01 

Weight 
0.2413064234922188E-01 
0.5024347217095568E-01 
0.6801787677830858E-01 
0.7952155999100788E-01 
0.8706680708376023E-01 
0.9216240765763570E-01 
0.9569254015486106E-01 
0.9817257766311556E-01 
0.9990914516102242E-01 
0.1010880172648715E+00 
0.1018214308931439E+00 
0.1021735189986602E+00 
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Figure 2: Maximum norms of derivatives of prolate spheroidal wave functions for c = 200, 
and of normalized Legendre polynomials 
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Table 6: Quadrature nodes for band-limited functions, with c = 150 and e = 10~14 

This table contains only half of the nodes and weights, in particular those for which the 
node is less than or equal to zero; reflecting these nodes around zero yields the remaining 
nodes, the weight for the node at -x being the same as the weight for the node at x. 

Node Weight 
-.9982883010959975E+00 
-.9911354691596528E+00 
-.9788315280982487E+00 
-.9621348937901911E+00 
-.9418386698454396E+00 
- .9186509576802944E+00 
-.8931541850293142E+00 
- .8658083894041821E+00 
- .8369709588254746E+00 
-.S069187108185302E+00 
- .7758670331396409E+00 
-.7439849501152674E+00 
-.7114064976175457E+00 
-.67S2391686910609E+00 
- .6445701594098660E+00 
-.6104710013384929E+00 
- .5760010202980960E+00 
- .5412099413257457E+00 
- .5061398697742787E+00 
- .4708268134473433E+00 
- .4353018643598344E+00 
- .3995921259242572E+00 
- .3637214481257228E+00 
-.3277110167114320E+00 
-.2915798305819667E+00 
- .2553450930388687E+00 
-.2190225363501577E+00 
-.1826266945721476E+00 
-.1461711362450572E+00 
-. 1096686661347072E+00 
-.7313150339365902E-01 
-.3657144220122915E-01 
0 

0.4374483371752129E-02 
0.9842619236149078E-02 
0.1463518300250369E-01 
0.1862396111287527E-01 
0.2184988739217138E-01 
0.2442858670932862E-01 
0.2648864579258096E-01 
0.2814375940413615E-01 
0.2948528624795690E-01 
0.3058356160435090E-01 
0.3149181066633766E-01 
0.3225015506203403E-01 
0.3288893713079314E-01 
0.3343126421620424E-01 
0.3389488931551181E-01 
0.3429358206877410E-01 
0.3463812513892117E-01 
0.3493704033879884E-01 
0.3519712095895683E-01 
0.3542382499917732E-01 
0.3562156808557525E-01 
0.3579394352776868E-01 
0.3594388900778062E-01 
0.3607381381247460E-01 
0.3618569660385742E-01 
0.3628116095737887E-01 
0.3636153393399723E-01 
0.3642789154364812E-01 
0.3648109393796617E-01 
0.3652181242257066E-01 
0.3655054982303338E-01 
0.3656765531685031E-01 
0.3657333451556860E-01 
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